A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - P - Q - R - S - T - U - V - W - X - Y - Z

Ackerman L, Jelínek, E., Medaris Jr, G., Ježek, J., Siebel, W., Strnad, L., 2009. Geochemistry of Fe-rich peridotites and associated pyroxenites from Horní Bory, Bohemian Massif: Insights into subduction-related melt–rock reactions.
Chemical Geology 259(3–4):152-167 doi:10.1016/j.chemgeo.2008.10.042

Adam J, Green TH, Day RA, 1992. An experimental study of two garnet pyroxenite xenoliths from the Bullenmerri and Gnotuk Maars of western Victoria, Australia.
Contributions to Mineralogy and Petrology 111(4):505-514 doi:10.1007/BF00320905

Albarède F, Provost A, 1977. Petrological and geochemical mass-balance equations: an algorithm for least-square fitting and general error analysis.
Computers & Geosciences 3(2):309-326 doi:10.1016/0098-3004(77)90007-3

Allègre CA, Minster JF, 1978. Quantitative model of trace element behavior in magmatic processes.
Earth and Planetary Science Letter 38:1-25 doi:10.1016/0012-821X(78)90123-1

Allègre CJ, Turcotte DL, 1986. Implications of a two-component marble-cake mantle.
Nature 323(6084):123-127 doi:10.1038/323123a0

Allègre CJ, Schiano P, Lewin E, 1995. Differences between oceanic basalts by multitrace element ratio topology.
Earth and Planetary Science Letter 129:1-12 doi:10.1016/0012-821X(94)00235-Q

Ancey M, Bastenaire F, Tixier R, 1978. Application des méthodes statistiques en microanalyse.
In: Maurice F, Meny L, Tixier R (eds) Microanalyse, microscopie à balayage, Les éditions du Physicien, Orsay p 233-347

Arculus RJ, 1974. Melting behavior of two basanites in the range 10–35 kbar and the effect of TiO2 on the olivine–diopside reactions at high pressures.
Carnegie Institution of Washington, Yearbook 74:512-515

Arndt NT, Goldstein SL, 1989. An open boundary between lower continental crust and mantle: its role in crust formation and crustal recycling.
Tectonophysics 161:201-212 doi:10.1016/0040-1951(89)90154-6

Asimow PD, Hirschmann MM, Ghiorso MS, O'Hara MJ, Stolper EM, 1995. The effect of pressure-induced solid-solid phase transitions on decompression melting of the mantle.
Geochimica et Cosmochimica Acta 59(21):4489-4506 doi:10.1016/0016-7037(95)00252-U

Asimow PD, 1997. A thermodynamic model of adiabatic melting of the mantle.
In: Dissertation (PhD), California Institute of Technology pp 370

Asimow PD, Ghiorso MS, 1998. Algorithmic modifications extending MELTS to calculate subsolidus phase relations.
American Mineralogist 83(9-10):1127-1132

Asimow PD, Stolper EM, 1999. Steady-state mantle-melt interactions in one dimension: equilibrium transport and melt focusing.
Journal of Petrology 40(3):475-494 doi:10.1093/petroj/40.3.475

Asimow PD, Hirschmann MM, Stolper EM, 2001. Calculation of Peridotite Partial Melting from Thermodynamic Models of Minerals and Melts, IV. Adiabatic Decompression and the Composition and Mean Properties of Mid-ocean Ridge Basalts.
Journal of Petrology 42(5):963-998 doi:10.1093/petrology/42.5.963

Asimow PD, Langmuir CH, 2003. The importance of water to oceanic mantle melting regimes.
Nature 421:815-820 doi:10.1038/nature01429

Asimow PD, Dixon JE, Langmuir CH, 2004. A hydrous melting and fractionation model for mid-ocean ridge basalts: Application to the Mid-Atlantic Ridge near the Azores.
Geochemistry, Geophysics, Geosystems 5(1) doi:10.1029/2003GC000568

Aubaud C, Pineau F, Hékinian, R., Javoy, M., 2005. Degassing of CO2, H2O in submarine lavas from the Society hotspot.
Earth and Planetary Science Letters 235:511-527 doi:10.1016/j.epsl.2005.04.047

Aubaud C, Pineau F, Hékinian, R., Javoy, M., 2006. Carbon and hydrogen isotope constraints on degassing of CO2 and H2O in submarine lavas from the Pitcairn hotspot (South Pacific).
Geophysical Research Letters 33(L02308) doi:10.1029/2005GL024907

Aulbach S, Griffin WL, Pearson NJ, O'Reilly SY, Doyle BJ, 2007. Lithosphere formation in the central Slave Craton (Canada): plume subcretion or lithosphere accretion?
Contributions to Mineralogy and Petrology 154:409-427 doi:10.1007/s00410-007-0200-1

A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - P - Q - R - S - T - U - V - W - X - Y - Z

Baker DR, Eggler DH, 1983. Fractionation paths of Atka (Aleutians) high-alumina basalts: Constraints from phase relations.
Journal of Volcanology, Geothermal Research 18:387-404 doi:10.1016/0377-0273(83)90017-3

Baker MB, Stolper EM, 1994. Determining the composition of high-pressure mantle melts using diamond aggregates.
Geochimica et Cosmochimica Acta 58(13):2811-2827 doi:10.1016/0016-7037(94)90116-3

Baker MB, Hirschmann MM, Ghiorso MS, Stolper EM, 1995. Compositions of near-solidus peridotite melts from experiments and thermodynamic calculations.
Nature 375(6529):308-311 doi:10.1038/375308a0

Baker MB, Beckett JR, 1999. The origin of abyssal peridotites: a reinterpretation of constraints based on primary bulk compositions.
Earth and Planetary Science Letters 171(1):49-61 doi:10.1016/S0012-821X(99)00130-2

Bartels KS, Kinzler RJ, Grove TL, 1991. High pressure phase relations of primitive high-alumina basalts from Medicine Lake volcano, northern California.
Contributions to Mineralogy and Petrology 108:253-270 doi:10.1007/BF00285935

Barth M, Rudnick RL, Horn I, McDonough WF, Spicuzza M, Valley JW, Haggerty SE, 2001. Geochemistry of xenolithic eclogites from West Africa: Part I. A link between low MgO eclogites and Archean crust formation.
Geochimica et Cosmochimica Acta 65:1499-1527 doi:/10.1016/S0016-7037(00)00626-8

Barth M, Rudnick RL, Horn I, McDonough WF, Spicuzza M, Valley JW, Haggerty SE, 2002. Geochemistry of xenolithic eclogites from West Africa: Part II. Origins the high MgO eclogites.
Geochimica et Cosmochimica Acta 66:4325-4345 doi:10.1016/S0016-7037(02)01004-9

Batiza R, 1984. Inverse relationship between Sr isotope diversity and rate of oceanic volcanism has implications for mantle heterogeneity.
Nature 309:440-441 doi:10.1038/309440a0

Batiza R, Niu Y, Zayac WC, 1990. Chemistry of seamounts near the East Pacific Rise: implications for the geometry of subaxial mantle flow.
Geology 18:1122-1125 doi:10.1130/0091-7613(1990)018<1122:COSNTE>2.3.CO;2

Beard BL, Fraracci KN, Taylor LA, Snyder GA, Clayton RN, Mayeda TK, Sobolev NV, 1996. Petrography and geochemistry of eclogites from the Mir Kimberlite, Yakutia, Russia.
Contributions to Mineralogy and Petrology 125:293-310 doi:10.1007/s004100050223

Beattie P, 1993. The generation of uranium series disequilibria by partial melting of spinel peridotite: constraints from partitioning studies.
Earth and Planetary Science Letters 117:379-391 doi:10.1016/0012-821X(93)90091-M

Beattie P, 1993. Uranium-Thorium disequilibria and partitioning on melting of garnet peridotite.
Nature 363:63-65 doi:10.1038/363063a0

Becker H, 1996. Crustal Trace Element and Isotopic Signatures in Garnet Pyroxenites from Garnet Peridotite Massifs from Lower Austria.
Journal of Petrology 37(4):785-810 doi:10.1093/petrology/37.4.785

Bedini RM, Bodinier JL, Vernieres J, 2002. Numerical simulation of Mg-Fe partitioning during melting and melt-rock interactions in the shallow upper mantle.
In: Fourth Orogenic Lherzolite Conference Samani; Japan. 2002 25:213-254 doi:10.1093/petrology/25.1.213

Bender JF, Hodges FN, Bence AE, 1978. Petrogenesis of basalts from the project FAMOUS area: Experimental study from 0 to 15 kilobars.
Earth and Planetary Science Letters 41:277-302 doi:10.1016/0012-821X(78)90184-X

Berman, RG, Koziol, A M, 1991. Ternary excess properties of grossular-pyrope-almandine garnet and their influence in geothermobarometry.
American Mineralogist 76(7-8):1223-1231

Bickle MJ, Ford CE, Nisbet EG, 1977. The petrogenesis of peridotitic komatiites: Evidence from high-pressure melting experiments.
Earth and Planetary Science Letters 37:97-106 doi:10.1016/0012-821X(77)90150-9

Bird P, 1979. Continental delamination and the Colorado Plateau.
Journal Geophysical Research 84(B13):7561-7571

Bizimis M, Sen G, Salters VJM, Keshav S, 2005. Hf-Nd-Sr isotope systematics of garnet pyroxenites from Salt Lake Crater, Oahu, Hawaii: evidence for a depleted component in Hawaiian volcanism.
Geochimica et Cosmochimica Acta 69:2629-2646 doi:10.1016/j.gca.2005.01.005

Blichert-Toft J, Albarède F, Kornprobst J, 1999. Lu-Hf Isotope Systematics of Garnet Pyroxenites from Beni Bousera, Morocco: Implications for Basalt Origin.
Science 283(5406):1303-1306 doi:10.1126/science.283.5406.1303

Bodinier J-L, Guiraud M, Fabriès J, Dostal J, Dupuy C, 1987. Petrogenesis of layered pyroxenites from the Lherz, Freychinède and Prades ultramafic bodies (Ariège, French pyrénées).
Geochimica et Cosmochimica Acta 51:279-290 doi:10.1016/0016-7037(87)90240-7

Bodinier J-L, 1988. Geochemistry and petrogenesis of the Lanzo peridotite body, western Alps.
Tectonophysics 149:67-88 doi:10.1016/0040-1951(88)90119-9

Bodinier J-L, Godard M, 2007. Orogenic, Ophiolitic, and Abyssal Peridotites.
Treatise on Geochemistry, Vol 2: The Mantle and Core 2.04:1-73 doi:10.1016/B0-08-043751-6/02004-1

Bodinier J-L, Garrido CJ, Chanefo I, Brugruier O, Gervilla F, 2008. Origin of pyroxenite-peridotite veined mantle by refertilization reactions: evidence from the Ronda Peridotite (Southern Spain).
Journal of Petrology 49(5):999-1025 doi:10.1093/petrology/egn014

Bonatti E, 1990. Not so hot "hot Spots" in the oceanic mantle.
Science 250:107-111 doi:10.1126/science.250.4977.107

Bonatti E, Ligi M, Brunelli D, Cipriani A, Fabretti P, Ferrante V, Gasperini L, Ottolini L, 2003. Mantle thermal pulses below the Mid-Atlantic Ridge and temporal variations in the formation of oceanic lithosphere.
Nature 423:499-505 doi:10.1038/nature01594

Bourdon B, Zindler A, Elliot T, Langmuir CH, 1996. Constraints on mantle melting at mid-ocean ridges from global 238U-230Th disequilibrium data.
Nature 384:231-235 doi:10.1038/384231a0

Bowen NL, Schairer JF, 1935. The system MgO-FeO-SiO2.
American Journal of Science 29:151-217 doi:10.2475/ajs.s5-29.170.151

Boyd FR, England JL, 1960. Apparatus for Phase-Equilibrium Measurements at Pressures up to 50 Kilobars and Temperatures up to 1750°C.
Journal of Geophysical Research 65(2):741-748 doi:10.1029/JZ065i002p00741

Braun MG, Kelemen PB, 2002. Dunite distribution in the Oman Ophiolite: Implications for melt flux through porous dunite conduits.
Geochemistry, Geophysics, Geosystems 3(11) doi:10.1029/2001GC000289

Braun MG, 2004. Petrologic and microstructural constraints on focused melt transport in dunites and the rheology of the shallow mantle.
Massachusetts Institute of Technology and Woods Hole Oceanographic Institution joint graduate program thesis pp 212

Breddam K, 2002. Kistufell: Primitive melt from the Iceland mantle plume.
Journal of Petrology 43(2):345–373 doi:10.1093/petrology/43.2.345

Breddam K, Kurz MD, Storey M, 2000. Mapping out the conduit of the Iceland mantle plume with helium isotopes
Earth and Planetary Science Letters 176(1):45–55 doi:10.1016/S0012-821X(99)00313-1

Brunelli D, Seyler M, 2010. Asthenospheric percolation of alkaline melts beneath the St. Paul region (Central Atlantic Ocean).
Earth and Planetary Science Letters 289:393-405 doi:10.1016/j.epsl.2009.11.028

Bureau H, Pineau F, Métrich, N., Semet, M.P., Javoy, M., 1998. A melt, fluid inclusion study of the gas phase at Piton de la Fournaise volcano (Réunion Island).
Chemical Geology 147:115-130 doi:10.1016/S0009-2541(97)00176-9


A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - P - Q - R - S - T - U - V - W - X - Y - Z


Carmichael ISE, Nicholls J, Smith AL, 1970. Silica activity in igneous rocks.
American Mineralogist 55(1-2):246-263


Carmichael ISE, Turner FJ, Verhoogen J, 1974. Igneous Petrology.
New York, McGraw- Hill" pp 739

Castillo PR, Klein EM, Bender JF, Langmuir CH, Shirey S, Batiza R, White W, 2000. Petrology and Sr, Nd and Pb isotope geochemistry of mid-ocean ridge basalt glasses from the 11°45'N to 15°00'N segment of the East Pacific Rise.
Geochemistry, Geophysics, Geosystems doi:10.1029/1999GC000024

Cawthorn RG, Ford CE, Biggar GM, Bravo MS, Clarke DB, 1973. Determination of the liquid composition in experimental samples: discrepancies between microprobe analysis and other methods.
Earth and Planetary Science Letters 21(1):1-5 doi:10.1016/0012-821X(73)90218-5

Chakraborty S, 1995. Diffusion in silicate melts.
In: Stebbins J, McMillan P, Dingwell D (eds) Structure, dynamics and properties of silicate melts, Mineralogical Society of America, Washington pp. 411-503

Chakraborty S, 1997. Rates and mechanisms of Fe-Mg interdiffusion in olivine at 980-1300°C.
Journal of Geophysical Research 102(B6):12317-12331 doi:10.1029/97JB00208

Chase CG, 1981. Oceanic island Pb: Two stage histories and mantle evolution.
Earth and Planetary Science Letters 52:277-284 doi:10.1016/0012-821X(81)90182-5

Chauvel C, Hémond C, Melting of a complete section of recycled oceanic crust: Trace element and Pb isotopic evidence from Iceland., 2000. Melting of a complete section of recycled oceanic crust: Trace element and Pb isotopic evidence from Iceland.
Geochemistry, Geophysics, Geosystems doi:10.1029/1999GC000002

Chrifi-Aloaoui H, 1997. Thermométrie et Origine des Pyroxénites Peralumineuses : Cas des pyroxénites à Grenat-Corindon des Beni Bousera (Nord du Maroc).
Laboratoire Magmas et Volcans, Université Blaise Pascal, Clermont-Ferrand pp 250

Christie DM, Carmichael ISE, Langmuir CH, 1986. Oxidation states of mid-ocean ridge basalt glasses.
Earth and Planetary Science Letters 79(3-4):397-411 doi:10.1016/0012-821X(86)90195-0

Cocker JD, Griffin BJ, Muehlenbachs K, 1982. Oxygen and carbon isotope evidence for seawater-hydrothermal alteration of the Macquarie Island ophiolite.
Earth and Planetary Science Letters 61:112-122 doi:10.1016/0012-821X(82)90043-7

Cohen LH, Ito K, Kennedy GC, 1967. Melting and Phase relations in an anhydrous basalt to 40 kilobars.
American Journal of Science 265:475-518 doi:10.2475/ajs.265.6.475

Coleman RG, Wang X, 1995. Overview of the geology and tectonics of UHPM.
In: Coleman RG, Wang X (eds) Ultrahigh Pressure Metamorphism. Cambridge University Press, Cambridge p 1-32 doi:10.2277/0521547997

Constable S, Heinson G, 2004. Hawaiian hot-spot swell structure from seafloor MT sounding.
Tectonophysics 389:111-124 doi:10.1016/j.tecto.2004.07.060

Conte AM, Dolfi D, Gaeta M, Misiti V, Mollo S, Perinelli C, 2009. Experimental constraints on evolution of leucite-basanite magma at 1 and 10-4 GPa: Implications for parental compositions of Roman high-potassium magmas.
European Journal of Mineralogy 21(4):763-782 doi:10.1127/​0935-1221/​2009/​0021-1934

Cooper KM, Eiler JM, Asimow PD, Langmuir CH, 2004. Oxygen isotope evidence for the origin of enriched mantle beneath the mid-Atlantic ridge.
Earth and Planetary Science Letters 220:297-316 doi:10.1016/S0012-821X(04)00058-5

Cottrell E, Kelley KA, 2011. The oxidation state of Fe in MORB glasses and the oxygen fugacity of the upper mantle.
Earth and Planetary Science Letters 305, 270-282 doi:10.1016/j.epsl.2011.03.014

Courtier AM, Jackson MG, Lawrence JF, Wang Z, Lee C-TA, Halama R, Warren JM, Workman R, Xu W, Hirschmann MM, Larson AM, Hart SR, Lithgow-Bertelloni C, Stixrude L, Chen W-P, 2007. Correlation of seismic and petrologic thermometers suggests deep thermal anomalies beneath hotspots.
Earth and Planetary Science Letters 264(1–2):308-316 doi:10.1016/j.epsl.2007.10.003

A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - P - Q - R - S - T - U - V - W - X - Y - Z

Daines MJ, Kohlstedt DL, 1994. The Transition from Porous to Channelized Flow Due to Melt/Rock Reaction During Melt Migration.
Geophysical Research Letters 21(2):145-148 doi:10.1029/93GL03052

Darbyshire FA, White RS, Priestley KF, 2000. Structure of the crust and uppermost mantle of Iceland from a combined seismic and gravity study.
Earth and Planetary Science Letters 181(3):409–428 doi:10.1016/S0012-821X(00)00206-5

Dasgupta R, Hirschmann MM, Stalker K, 2006. Immiscible transition from carbonate-rich to silicate-rich melts in the 3 GPa melting interval of eclogite + CO2 and genesis of silica-undersaturated ocean island lavas.
Journal of Petrology 47(4):647-671 doi:10.1093/petrology/egi088

Dasgupta R, Hirschmann MM, Smith ND, 2007. Partial Melting Experiments of Peridotite + CO2 at 3 GPa, Genesis of Alkalic Ocean IslBasalts.
Journal of Petrology 48(11):2093-2124 doi:10.1093/petrology/egm053

Dasgupta R, Hirschmann MM, 2007. A modified iterative sandwich method for determination of near-solidus partial melt compositions. II. Application to determination of near-solidus melt compositions of carbonated peridotite.
Contributions to Mineralogy and Petrology 154:647-651 doi:10.1007/s00410-007-0214-8

Dasgupta R, Jackson MG, Lee C-TA, 2010. Major element chemistry of ocean island basalts — Conditions of mantle melting, heterogeneity of mantle source.
Earth and Planetary Science Letters 289:377-392 doi:10.1016/j.epsl.2009.11.027

Dasgupta R, Hirschmann MM, 2010. The deep carbon cycle and melting in Earth's interior.
Earth and Planetary Science Letters 298:1-13 doi:10.1016/j.epsl.2010.06.039

Davies GR, Nixon PH, Pearson DG, Obata M, 1993. Tectonic implications of graphitised diamonds from the Ronda peridotite massif, southern Spain.
Geology 21:471-474 doi:10.1130/0091-7613(1993)021<0471:TIOGDF>2.3.CO;2

Davis BTC, 1964. The system diopside-forsterite-pyrope at 40 kilobars. .
Carnegie Institution of Washington, Yearbook 63:165-171

Davis FA, Hirschmann MM, Humayun M, 2011. The composition of the incipient partial melt of garnet peridotite at 3 GPa and the origin of OIB.
Earth and Planetary Science Letters 308(3–4):380-390 doi:10.1016/j.epsl.2011.06.008

Day JMD, Pearson DG, Macpherson CG, Lowry D, Carracedo J-C, 2009. Pyroxenite-rich mantle formed by recycled oceanic lithosphere: Oxygen-osmium isotope evidence from Canary Island lavas.
Geology 37(6):555-558 doi:10.1130/G25613A.1

Dessai AG, Markwick A, Vasellic O, Downesb H, 2004. Granulite and pyroxenite xenoliths from the Deccan Trap: insight into the nature and composition of the lower lithosphere beneath cratonic India.
Lithos 78:263-290 doi:10.1016/j.lithos.2004.04.038

Dick HJB, Sinton JM, 1979. Compositional layering in Alpine peridotites: evidence for pressure solution creep in the mantle.
The Journal of Geology 87(4):403-416

Dick HJB, 1989. Abyssal peridotites, very slow spreading ridges and ocean ridge magmatism.
In: Saunders AD, Norry MJ (eds) Magmatism in the ocean basins., vol 42. Geol Soc Spec Publ, London, p 71-105

Dickey JS, 1970. Partial fusion products in alpine-type peridotites: Serrania de la Ronda and other examples.
Mineral Society American Special Paper 3:33-49

Dixon JE, Clague DA, Wallace P, Poreda R, 1997. Volatiles in alkalic basalts from the North Arch volcanic field, Hawaii: extensive degassing of deep submarine-erupted alkalic series lavas.
Journal of Petrology 38:911-939 doi:10.1093/petroj/38.7.911

Donnelly KE, Goldstein SL, Langmuir CH, Spiegelman M, 2004. Origin of enriched ocean ridge basalts and implications for mantle dynamics.
Earth and Planetary Science Letters 226:347-366 doi:10.1016/j.epsl.2004.07.019

Downes H, 2007. Origin and significance of spinel and garnet pyroxenites in the shallow lithospheric mantle: Ultramafic massifs in orogenic belts in Western Europe and NW Africa.
Lithos 99:1-24 doi:10.1016/j.lithos.2007.05.006

Ducea MN, 2002. Constraints on the bulk composition and root foundering rates of continental arcs: A California arc perspective.
Journal of Geophysical Research 107(B11):2304 doi:10.1029/2001JB000643

Dupré B, Allègre CJ, 1983. Pb-Sr isotope variation in Indian Ocean basalts and mixing phenomena.
Nature 303(5913):142-146 doi:10.1038/303142a0

A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - P - Q - R - S - T - U - V - W - X - Y - Z

Eason D, Sinton J, 2006. Origin of high-Al N-MORB by fractional crystallization in the upper mantle beneath the Galápagos Spreading Center.
Earth and Planetary Science Letters 252:423-436 doi:10.1016/j.epsl.2006.09.048

Eason DE, Sinton JM, 2009. Lava shields and fissure eruptions of the Western Volcanic Zone, Iceland: Evidence for magma chambers and crustal interaction
Journal of Volcanology and Geothermal Research 186(3-4):331–348 doi:10.1016/j.jvolgeores.2009.06.009

Eggins SM, 1992. Petrogenesis of Hawaiian tholeiites: 1, phase equilibria constraints.
Contributions to Mineralogy and Petrology 110:387-397 doi:10.1007/BF00310752

Eiler JM, Schiano P, Kitchen N, Stolper EM, 2000. Oxygen-isotope evidence for recycled crust in the sources of mid-ocean-ridge basalts.
Nature 403(6769):530-534 doi:10.1038/35000553

Elthon D, 1979. High magnesia liquids as the parental magma for ocean floor basalts.
Nature 278(5704):514-518 doi:10.1038/278514a0

Elthon D, Scarfe CM, 1980. High-pressure phase equilibria of a high-magnesia basalt: Implications for the origin of mid-ocean ridge basalts.
In: Can Inst Wa Yrbk p 277-281

Elthon D, Scarfe CM, 1984. High-pressure phase equilibria of a high-magnesia basalt and the genesis of primary oceanic basalts.
American Mineralogist 69(1-2):1-15

Elthon D, 1987. Petrology of gabbroic rocks from the mid-Cayman Rise spreading center.
Journal of Geophysical Research 92:658-682 doi:10.1029/JB092iB01p00658

Elthon D, 1989. Pressure of origin of primary mid-ocean ridge basalts.
In: Saunders A, Norry MJ (eds) Magmatism in Ocean Basins 42, pp 125-136. doi:10.1144/GSL.SP.1989.042.01.08

Engi M, 1983. Equilibria involving Al-Cr spinel: Mg-Fe exchange with olivine. Experiments, thermodynamic analysis, and consequences for geothermometry.
American Journal of Science 283(A):29-71

Escrig S, Schiano P, Schilling J-G, Allègre CJ, 2005. Rhenium-osmium isotope systematics in MORB from the Southern Mid-Atlantic Ridge (40°-50° S).
Earth and Planetary Science Letters 235:528-548 doi:10.1016/j.epsl.2005.04.035

A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - P - Q - R - S - T - U - V - W - X - Y - Z

Falloon TJ, Green DH, Hatton CJ, Harris KL, 1988. Anhydrous Partial Melting of a Fertile and Depleted Peridotite From 2 to 30 kb and Application to Basalt Petrogenesis.
Journal of Petrology 29(6):1257-1282 doi:10.1093/petrology/29.6.1257

Falloon TJ, Green DH, Danyushevsky LV, Faul UH, 1999. Peridotite melting at 1.0 and 1.5 GPa: an experimental evaluation of techniques using diamond aggregates and mineral mixes for determination of near-solidus melts.
Journal of Petrology 40(9):1343-1375 doi:10.1093/petroj/40.9.1343

Falloon TJ, Danyushevsky LV, 2000. Melting of Refractory Mantle at 1.5, 2 and 2.5 GPa under Anhydrous and H2O-undersaturated Conditions: Implications for the Petrogenesis of High-Ca Boninites and the Influence of Subduction Components on Mantle Melting.
Journal of Petrology 41(2):257-283 doi:10.1093/petrology/41.2.257

Falloon TJ, Green DH, Danyushevsky LV, 2001. Peridotite melting at 1 GPa; reversal experiments on partial melt compositions produced by peridotite-basalt sandwich experiments.
Journal of Petrology 42:2363-2390 doi:10.1093/petrology/42.12.2363

Falloon TJ, Green DH, Danyshevsky LV, McNeill AW, 2008. The composition of near-solidus partial melts of fertile peridotite at 1 and 1.5 GPa: Implications for the petrogenesis of MORB.
Journal of Petrology 49(4):591-616 doi:10.1093/petrology/egn009

Faul UH, 1997. Permeability of partially molten upper mantle rocks from experiments and percolation theory.
Journal of Geophysical Research 102 (B5), 10299-10311. doi:10.1029/96JB03460

Faure F, Schiano P, 2005. Experimental investigation of equilibration conditions during forsterite growth and melt inclusion formation.
Earth and Planetary Science Letters 236:882-898 doi:10.1016/j.epsl.2005.04.050

Fornari DJ, Perfit MR, Allan JF, Batiza R, Haymond R, Barone A, Ryan WBF, Smith T, Simkin T, Luckman MA, 1988. Geochemical and structural studies of the Lamont Seamount: seamounts as indicators of mantle processes.
Earth and Planetary Science Letters 89:63-83 doi:10.1016/0012-821X(88)90033-7

Fram MS, Longhi J, 1992. Phase equilibria of dikes associated with Proterozoic anorthosite complexes.
American Mineralogist 77:605-616

France L, Ouillon N, Chazot G, Kornprobst J, Boivin P, 2009. CMAS 3D, a new program to visualize and project major elements compositions in the CMAS system.
Computers & Geosciences 35:1304-1310 doi:10.1016/j.cageo.2008.07.002

Freer R, Carpenter MA, Long JVP, Reed SJB, 1982. "Null result" diffusion experiments with diopside: implications for pyroxene equilibria.
Earth and Planetary Science Letters 58:285-292 doi:10.1016/0012-821X(82)90201-1

Frey FA, 1980. The origin of pyroxenites and garnet pyroxenites from Salt Lake Crater, Oahu, Hawaii: trace element evidence.
American Journal of Science 280(A):427-449

Frey FA, Walker N, Stakes D, Hart SR, Nielsen R, 1993. Geochemical characteristics of basaltic glasses from the AMAR and FAMOUS axial valleys, Mid-Atlantic Ridge (36°-37°N) petrogenetic implications.
Earth and Planetary Science Letters 115:117-136 doi:10.1016/0012-821X(93)90217-W

Frezzotti ML, Burke EAJ, De Vivo B, Stefanini B, Villa IM, 1992. Mantle fluids in pyroxenite nodules from Salt Lake Crater (Oahu, Hawaii).
European Journal of Mineralogy 4(5):1137-1153 doi:http://eurjmin.geoscienceworld.org/content/4/5/1137.abstract

Fujii T, Bougault H, 1983. Melting relations of a magnesian abyssal tholeiite and the origin of MORBs.
Earth and Planetary Science Letters 62:283-295 doi:10.1016/0012-821X(83)90091-2

Fujii T, Scarfe CM, 1985. Composition of liquids coexisting with spinel lherzolite at 10 kbar and the genesis of MORBs.
Contributions to Mineralogy and Petrology 90(1):18-28 doi:10.1007/BF00373037

A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - P - Q - R - S - T - U - V - W - X - Y - Z

Gaetani GA, Grove TL, 1998. The influence of water on melting of mantle peridotite
Contributions to Mineralogy and Petrology 1131:323–346 doi:10.1007/s004100050396

Gamble RP, Taylor LA, 1980. Crystal/liquid partitioning in augite: effects of cooling rate.
Earth and Planetary Science Letters 47:21-33 doi:10.1016/0012-821X(80)90100-4

Gannoun A, Burton KW, Parkinson IJ, Alard O, Schiano P, Thomas LE, 2007. The scale and origin of the osmium isotope variations in mid-ocean ridge basalts.
Earth and Planetary Science Letters 259(3-4):541-556 doi:10.1016/j.epsl.2007.05.014

Garlick GD, MacGregor ID, Vogel DE, 1971. Oxygen isotope ratios in eclogites from kimberlites.
Science 172:1025-1027 doi:10.1126/science.172.3987.1025

Garrido CJ, Bodinier J-L, 1999. Diversity of mafic rocks in the Ronda peridotite: Evidence for persuasive melt-rock reaction during heating of subcontinental litosphere by upwelling asthenosphere.
Journal of Petrology 40:729-754. doi:10.1093/petroj/40.5.729

Gast PW, 1968. Trace element fractionations and the origin of tholeiitic and alkaline magma types.
Geochimica et Cosmochimica Acta 32:1057-1086 doi:10.1016/0016-7037(68)90108-7

Gee MAM, Taylor RN, Thirlwall MF, Murton BJ, 1998. Glacioisostacy controls the chemical and isotopic characteristics of tholeiites from Reykjanes Peninsula, SW Iceland.
Earth and Planetary Science Letters 164(1-2):1–5 doi:10.1016/S0012-821X(98)00246-5

Gee MAM, Thirlwall MF, Taylor RN, Lowry D, Murton BJ, 1998. Crustal processes: Major controls on Reykjanes peninsula lava chemistry, sw Iceland.
Journal of Petrology 39(5):819–839 doi:10.1093/petroj/39.5.819

Ghent ED, Coleman RG, Hadely DG, 1980. Ultramafic inclusions and host alkali olivine basalts of the southern coastal plain of the Red Sea, Saudi Arabia.
American Journal of Science 280(A):499-527

Ghiorso MS, Sack RO, 1995. Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures.
Contributions to Mineralogy and Petrology 119(2):197-212 doi:10.1007/BF00307281

Ghiorso MS, 1997. Thermodynamic models of igneous processes.
Annual Review of Earth and Planetary Science 25:221-241 doi:10.1146/annurev.earth.25.1.221

Ghiorso MS, Hirschmann MM, Reiners PW, Kress III VC, 2002. The pMELTS: A revision of MELTS for improved calculation of phase relations and major element partitioning related to partial melting of the mantle to 3 GPa.
Geochemistry, Geophysics, Geosystems 3(5) doi:10.1029/2001GC000217

Ghods A, Arkani-Hamed J, 2000. Melt migration beneath MORs.
Geophysical Journal International 140, 687–697. doi:10.1046/j.1365-246X.2000.00032.x

Gibson SA, Geist D, 2010. Geochemical and geophysical estimates of lithospheric thickness variation beneath Galàpagos.
Earth and Planetary Science Letters 300(3-4):275–286 doi:10.1016/j.epsl.2010.10.002

Gill Ibarguchi I, Mendia M, Girardeau J, Peucat J-J, 1990. Petrology of eclogites and clinopyroxene-garnet metabasites from the Cabo Ortegal Complex (northwestern Spain).
Lithos 25:133-162 doi:10.1016/0024-4937(90)90011-O

Godard M, Bodinier JL, Vasseur G, 1995. Effects of mineralogical reactions on trace element redistributions in mantle rocks during percolation processes: a chromatographic approach.
Earth and Planetary Science Letters 133:449-461 doi:10.1016/0012-821X(95)00104-K

Grand SP, van der Hilst R, Widiyantoro S, 1997. High resolution global tomography: a snapshot of convection in the Earth.
Geol. Soc. Am. Today 7(4):1-7

Green DH, Ringwood AE, 1963. Mineral assemblage in a model mantle composition.
Journal of Geophysical Research 68: 937-945 doi:10.1029/JZ068i003p00937

Green DH, Ringwood AE, 1967. The genesis of basaltic magmas.
Contributions to Mineralogy and Petrology 15(2):103-190 doi:10.1007/BF00372052

Green DH, 1973. Experimental melting studies on a model upper mantle composition at high pressure under water-saturated and water-undersaturated conditions.
Earth and Planetary Science Letters 19:37–53 doi:10.1016/0012-821X(73)90176-3

Green DH, Hibberson WO, Jaques AL, 1979. Petrogenesis of mid-ocean ridge basalts.
In: McElhinney MW (ed) The Earth: Its Origin, Structure and Evolution, London

Green DH, Falloon TJ, Eggins SM, Yaxley GM, 2001. Primary magmas and mantle temperatures.
European Journal of Mineralogy. 13:437-451 doi:10.1127/0935-1221/2001/0013-0437

Green ECR, Holland TJB, Powell R, White RW, 2012. Garnet and spinel lherzolite assemblages in MgO–Al2O3–SiO2 and CaO–MgO–Al2O3–SiO2: thermodynamic models and an experimental conflict.
Journal of Metamorphic Geology 30(6):561–577 doi:10.1111/j.1525-1314.2012.00981.x

Gregory RT, Taylor HP, 1981. An oxygen isotope profile in a section of cretaceous oceanic crust, Samail ophiolite, Oman: evidence for d18O buffering of the oceans by deep (>5 km) seawater-hydrothermal circulation at mid-ocean ridges.
Journal of Geophysical Research 86(B4):2737-2755 doi:10.1029/JB086iB04p02737

Griffin WL, O'Reilly SY, Ryan CG, 1999. The composition and origin of subcontinental lithospheric mantle.
In: Fei Y, Bertka CM, Mysen BO (eds) Mantle petrology: field observations and high-pressure experimentation, Washington p 13-45

Grove TL, Kinzler RJ, Byan WB, 1992. Fractionation of Mid-Ocean Ridge Basalt (MORB).
Geophysical Monograph 71(281-310). doi:10.1029/GM071p0281

Gu YJ, Dziewonski AM, Su W-J, Ekstrom G, 2001. Models of the mantle shear velocity and discontinuities in the pattern of lateral heterogeneities.
Journal of Geophysical Research 106:11169-11199 doi:10.1029/2001JB000340

Gudfinnsson GH, Presnall DC, 2000. Melting Behaviour of Model Lherzolite in the System CaO-MgO-Al2O3-SiO2-FeO at 0.7-2.8 GPa.
Journal of Petrology 41(8):1241-1269 doi:10.1093/petrology/41.8.1241

Gust DA, Perfit MR, 1987. Phase relations of a high-Mg basalt from the Aleutian Island Arc: Implications for primary island arc basalts and high-Al basalts.
Contributions to Mineralogy and Petrology 97:7-18 doi:10.1007/BF00375210

A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - P - Q - R - S - T - U - V - W - X - Y - Z

Hammouda T, Laporte D, 2000. Ultrafast mantle impregnation by carbonatite melts.
Geology 28(3):283-285 doi:10.1130/0091-7613(2000)28<283:UMIBCM>2.0.CO;2

Hanson GN, 1977. Geochemical evolution of the suboceanic mantle.
Journal of the Geological Society 134(2):235-253 doi:10.1144/gsjgs.134.2.0235

Hardarson BS, Fitton JG, 1997. Mechanisms of crustal accretion in Iceland.
Geology 25(11):1043-1046 doi:10.1130/0091-7613(1997)025<1043:MOCAII>2.3.CO;2

Hart SR, Schilling J-G, Powell JL, 1973. Basalts from Iceland and along the Reykjanes ridge: Sr isotope geochemistry.
Nature physical science 246:104-107 doi:10.1038/physci246104a0

Hart SR, 1984. A large-scale isotope anomaly in the Southern Hemisphere mantle.
Nature 309:753-757 doi:10.1038/309753a0

Hart SR, Hauri HE, Oschmann LA, Whitehead JA, 1992. Mantle plumes and entrainment: isotopic evidence.
Science 256:517-520 doi:10.1126/science.256.5056.517

Hart SR, 1993. Equilibration during mantle melting: a fractal tree model.
Proceedings of the National Academy of Sciences of the USA p 11914-11918

Hauri EH, 1996. Major-element variability in the Hawaiian mantle plume.
Nature 382:415-419 doi:10.1038/382415a0

Hékinian R, Juteau T, Gràcia, E., Sichler, B., Sichel, S., Udintsev, G., Apprioual, R., Ligi, M., 2000. Submersible observations of Equatorial Atlantic mantle: The St. Paul Fracture Zone region.
Marine Geophysical Researches 21:529-560 doi:10.1023/A:1004819701870

Helffrich G, Wood B, 2001. The Earth's Mantle.
Nature 412:501-507 doi:10.1038/35087500

Hellebrand E, Johnson KTM, Hammer JE, Suhr G, von der Handt A, Snow JE, Dick HJB, 2008. Chromite-Hosted Hydrous Melt Inclusions in Oceanic Dunites.
Eos Trans. AGU 89(53), Fall Meet. Suppl.,

Hémond C, Hofmann AW, Vlastélic I, Nauret F, 2006. Origin of MORB enrichment and relative trace element compatibilities along the Mid-Atlantic Ridge between 10° and 24°N.
Geochemistry, Geophysics, Geosystems 7 doi:10.1029/2006GC001317

Hémond, C, Arndt N, Litchenstein U, Hofmann A, Oskarsson N, Steinthorsson S, 1993. The heterogeneous Iceland plume: Nd-Sr-O isotopes and trace element constraints.
Journal of Geophysical Research 98(B9):15833–15850 doi:10.1029/93JB01093

Herbert LB, Montési LGJ, 2010. Generation of permeability barriers during melt extraction at mid-ocean ridges.
Geochemistry, Geophysics, Geosystems 11 (12). doi:10.1029/2010GC003270

Herzberg C, Raterron P, Zhang J, 2000. New experimental observations on the anhydrous solidus for peridotite KLB-1.
Geochemistry, Geophysics, Geosystems 1(11). doi:10.1029/2000GC000089

Herzberg C, O'Hara MJ, 2002. Plume-associated ultramafic magmas of Phanerozoic age.
Journal of Petrology 43(10):1857-1883 doi:10.1093/petrology/43.10.1857

Herzberg C, 2006. Petrology and thermal structure of the Hawaiian plume from Mauna Kea volcano.
Nature 444:605-609 doi:10.1038/nature05254

Herzberg C, Asimow PD, Arndt N, Niu Y, Lesher CM, Fitton JG, Cheadle MJ, Saunders AD, 2007. Temperature in ambient mantle and plumes: Constraints from basalts, picrites and komatiites.
Geochemistry, Geophysics, Geosystems 8(2). doi:10.1029/2006GC001390

Herzberg C, Asimow PD, 2008. Petrology of some oceanic island basalts: PRIMELT2.XLS software for primary magma calculation.
Geochem. Geophys. Geosyst. 9(Q09001) doi:10.1029/2008GC002057

Herzberg C, 2011. Identification of Source Lithology in the Hawaiian and Canary Islands: Implications for Origins.
Journal of Petrology 52(1):113-146 doi:10.1093/petrology/egq075

Hess PC, 1992. Phase equilibria constraints on the Origin of Ocean Floor Basalts.
American Geophysical Union Monograph 71:67-102. doi:10.1029/GM071p0067

Hills DV, Haggerty SE, 1989. Petrochemistry of eclogites from the Koidu Kimberlite Complex, Sierra Leone.
Contributions to Mineralogy and Petrology 103:397-422 doi:10.1007/BF01041749

Hirose K, Kushiro I, 1993. Partial melting of dry peridotites at high pressures: Determination of compositions of melts segregated from peridotite using aggregates of diamond.
Earth and Planetary Science Letters 114(4):477-489 doi:10.1016/0012-821X(93)90077-M

Hirose K, Kawamoto T, 1995. Hydrous partial melting of lherzolite at 1 GPa: the effect of H2O on the genesis of basaltic magmas.
Earth and Planetary Science Letters 133(463-473) doi:10.1016/0012-821X(95)00096-U

Hirose K, 1997. Partial melt compositions of carbonated peridotite at 3 GPa, role of CO2 in alkali-basalt magma generation.
Geophysical Research Letters 24(22):2837-2840 doi:10.1029/97GL02956

Hirose K, Fei Y, Ma Y, Mao H, 1999. The fate of subducted basaltic crust in the Earth's lower mantle.
Nature 397:53-56 doi:10.1038/16225

Hirschmann MM, Stolper EM, 1996. A possible role for garnet pyroxenite in the origin of the "garnet signature" in MORB.
Contributions to Mineralogy and Petrology 124(2):185-208 doi:10.1007/s004100050184

Hirschmann MM, Baker MB, Stolper EM, 1998. The effect of alkalis on the silica content of mantle-derived melts.
Geochimica et Cosmochimica Acta 62(5):883-902 doi:10.1016/S0016-7037(98)00028-3

Hirschmann MM, Ghiorso MS, Wasylenki LE, Asimow PD, Stolper EM, 1998. Calculation of Peridotite Partial Melting from Thermodynamic Models of Minerals and Melts. I. Review of Methods and Comparison with Experiments.
Journal of Petrology 39(6):1091-1115 doi:10.1093/petroj/39.6.1091

Hirschmann MM, Asimow PD, Ghiorso MS, Stolper EM, 1999. Calculation of peridotite partial melting from thermodynamic models of minerals and melts. III. Controls on isobaric melt production and effect of water on melt production.
Journal of Petrology 40(5):831-851 doi:10.1093/petroj/40.5.831

Hirschmann MM, Ghiorso MS, Stolper EM, 1999. Calculation of peridotite partial melting from thermodynamic models of minerals and melts. II. Isobaric variations in melts near the solidus and owing to variable source composition.
Journal of Petrology 40(2):297-313 doi:10.1093/petroj/40.2.297

Hirschmann MM, 2000. Mantle solidus: Experimental constraints and the effects of peridotite composition.
Geochemistry, Geophysics, Geosystems 1(10) doi:10.1029/2000GC000070

Hirschmann MM, Kogiso T, Baker MB, Stolper EM, 2003. Alkalic magmas generated by partial melting of garnet pyroxenite.
Geology 31(6):481-484 doi:10.1130/0091-7613(2003)031<0481:AMGBPM>2.0.CO;2

Hirschmann MM, Dasgupta R, 2007. A modified iterative sandwich method for determination of near-solidus partial melt compositions. I. Theorical considerations.
Contributions to Mineralogy and Petrology 154:635-645 doi:10.1007/s00410-007-0213-9

Hirschmann MM, Ghiorso MS, Davis FA, Gordon SM, Mukherjee S, Grove TL, Krawczynski M, Medard E, Till CB, 2008. Library of experimental phase relations (LEPR): A database and Web portal for experimental magmatic phase equilibria data.
Geochemistry, Geophysics, Geosystems 9(3) doi:10.1029/2007GC001894

Ho KS, Chen JC, Smith AD, Juang WS, 2000. Petrogenesis of two groups of pyroxenite from Tungchihsu and Penghu Islands and Taiwan Strait: implications for mantle metasomatism beneath SE China.
Chemical Geology 167(3–4):355-372 doi:10.1016/S0009-2541(99)00237-5

Hoffer G, 2008. Fusion partielle d'un manteau métasomatisé par un liquide adakitique: approches géochimique et expérimentale de la genèse et de l'évolution des magmas de l'arrière-arc équatorien.
In: Département des Sciences de la Terre, Université Blaise Pascal, Clermont-Ferrand pp 320

Hofmann AW, White MW, 1982. Mantle plumes from ancient oceanic crust.
Earth and Planetary Science Letters 57: 421-436. doi:10.1016/0012-821X(82)90161-3

Hofmann AW, 1997. Mantle geochemistry: the message from oceanic volcanism.
Nature 385, 219-229 doi:10.1038/385219a0

Hofmann AW, 2003. Sampling mantle heterogeneity through oceanic basalts: Isotopes and traces elements.
In: Treatise on Geochemistry, Carlson RW (ed) The Mantle and Core, vol 2. Oxford pp 61-101 doi:10.1016/B0-08-043751-6/02123-X

Holbig ES, Grove TL, 2008. Mantle melting beneath the Tibetan Plateau: Experimental constraints on ultrapotassic magmatism.
Journal of Geophysical Research 113(B04210) doi:10.1029/2007JB005149

Holland TJB, Hudson NFC, Powell R, Harte B, 2013. New thermodynamic models and calculated phase equilibria in NCFMAS for basic and ultrabasic compositions through the transition zone into the uppermost lower mantle.
Journal of Petrology 54(9):1901–1920 doi:10.1093/petrology/egt035

Holland TJB, Powell R, 1998. An internally consistent thermodynamic data set for phases of petrological interest.
Journal of Metamorphic Geology 16(3):309–343 doi:10.1111/j.1525-1314.1998.00140.x

Holland TJB, Powell R, 2011. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids.
Journal of Metamorphic Geology 29(3):333–383 doi:10.1111/j.1525-1314.2010.00923.x

Holloway JR, Wood BJ, 1988. Simulating the Earth: Experimental geochemistry
Boston, Massachusetts pp 196

Holtzman BK, Groebner NJ, Zimmerman ME, Ginsberg SB, 2003. Stress-driven melt segregation in partially molten rocks.
Geochemistry, Geophysics, Geosystems 4 (5). doi:10.1093/petrology/egm065

Hubbard NJ, 1969. A chemical comparison of oceanic ridge, Hawaiian tholeiitic and Hawaiian alkalic basalts.
Earth and Planetary Science Letters 5:346–352 doi:10.1016/S0012-821X(68)80063-9

Humphreys EM, Niu Y, 2009. On the composition of ocean island basalts (OIB): The effects of lithospheric thickness variation and mantle metasomatism.
Lithos 112:118-136 doi:10.1016/j.lithos.2009.04.038

A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - P - Q - R - S - T - U - V - W - X - Y - Z

Irving AJ, 1974. Geochemical and High Pressure Experimental Studies of Garnet Pyroxenite and Pyroxene Granulite Xenoliths from the Delegate Basaltic Pipes, Australia.
Journal of Petrology 15(1):1-40 doi:10.1093/petrology/15.1.1

Irving AJ, 1980. Petrology and geochemistry of composite ultramafic xenoliths in alkalic basalts and implications for magmatic processes within the mantle.
American Journal of Science 280(A):389-426

Irving AJ, Green DH, 2008. Phase relationships of hydrous alkalic magmas at high pressures: Production of nepheline hawaiitic to mugearitic liquids by amphibole-dominated fractional crystallization within the lithospheric mantle.
Journal of Petrology 49(4):741-756 doi:10.1093/petrology/egm088

Ito G, Shen Y, Hirth G, Wolfe CJ, 1999. Mantle flow, melting, and dehydration of the Iceland mantle plume.
Earth and Planetary Science Letters 165(1):81–96 doi:10.1016/S0012-821X(98)00216-7

Ito G, Mahoney JJ, 2005. Flow and melting of a heterogeneous mantle: 1. Method and importance to the geochemistry of ocean island and mid-ocean ridge basalts.
Earth and Planetary Science Letters 230:29-46 doi:10.1016/j.epsl.2004.10.035

Ito K, Kennedy GC, 1974. The composition of liquids formed by partial melting of eclogites at high temperatures and pressures.
The Journal of Geology 82(3):383-392

Iwamori H, 1993. A model for disequilibrium mantle melting incorporating melt transport by porous and channel flows.
Nature 366:734-737 doi:10.1038/366734a0

A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - P - Q - R - S - T - U - V - W - X - Y - Z

Jackson MD, Ohnenstetter M, 1981. Peridotite and gabbroic structures in the Monte Maggiore Massif, Alpine Corsica.
The Journal of Geology 89(6):703-719 doi:stable/30068500

Jackson MG, Dasgupta R, 2008. Compositions of HIMU, EM1, and EM2 from global trends between radiogenic isotopes and major elements in ocean island basalts.
Earth and Planetary Science Letters 276:175-186 doi:10.1016/j.epsl.2008.09.023

Jacob DE, Jagoutz E, Lowry D, Mattey D, Kudrjavtseva G, 1994. Diamondiferous eclogites from Siberia: remnants of Archean oceanic crust.
Geochimica et Cosmochimica Acta 58:5191-5207 doi:10.1016/0016-7037(94)90304-2

Jacob DE, 2004. Nature and origin of eclogite xenoliths from kimberlites.
Lithos 77:295-316 doi:10.1016/j.lithos.2004.03.038

Jahn B, Fan Q, Yang J-J, Henin O, 2003. Petrogenesis of the Maowu pyroxenite-eclogite body from the UHP metamorphic terrane of Dabieshan: chemical and isotopic constraints.
Lithos 70:243-267 doi:10.1016/S0024-4937(03)00101-4

Janney PE, Le Roex AP, Carlson RW, 2005. Hafnium Isotope and Trace Element Constraints on the Nature of Mantle Heterogeneity beneath the Central Southwest Indian Ridge (13°E to 47°E).
Journal of Petrology 46(12):2427-2464 doi:10.1093/petrology/egi060

Jaques AL, Green DH, 1980. Anhydrous melting of peridotite at 0-15 kb pressure and the genesis of tholeiitics basalts.
Contributions to Mineralogy and Petrology 73:287-310 doi:10.1007/BF00381447

Johannes WJ, Bell PM, Mao HK, Boettcher AL, Chipman DW, Hays JF, Newton RC, Seifert F, 1971. An interlaboratory comparison of piston-cylinder pressure calibration using the albite breakdown reaction.
Contributions to Mineralogy and Petrology 32:24-38 doi:10.1007/BF00372231

Johannes WJ, Bode B, 1978. Loss of iron to Pt-container in melting experiments with basalts and a method to reduce it.
Contributions to Mineralogy and Petrology 67:221-225 doi:10.1007/BF01046578

Johnson KTM, Dick HJB, Shimizu N, 1990. Melting in the Oceanic Upper Mantle: An Ion Microprobe Study of Diopsides in Abyssal Peridotites.
Journal of Geophysical Research 95(B3):2661-2678 doi:10.1029/JB095iB03p02661

Johnson KTM, Kushiro I, 1992. Segregation of high pressure partial melts from peridotite using aggegate of diamond: a new experimental approach.
Geophysical Research Letters 19(16):1703-1706 doi:10.1029/92GL01635

Johnston AD, 1986. Anhydrous P-T phase relations of near-primary high-alumina basalt from the South Sandwich Islands.
Contributions to Mineralogy and Petrology 92:368-382 doi:10.1007/BF00572166

Johnston AD, Draper DS, 1992. Near-liquidus phase relations of an anhydrous high-magnesia basalt from the Aleutian Islands: Implications for arc magma genesis and ascent.
Journal of Volcanology, Geothermal Research 52:27-41 doi:10.1016/0377-0273(92)90131-V

Jones SM, Murton BJ, Fitton JG, White NJ, Maclennan J, Walters RL, 2013. A joint geochemical-geophysical record of time-dependent mantle convection south of Iceland.
Earth and Planetary Science Letters 386:86-87 doi:10.1016/j.epsl.2013.09.029

Jull M, Kelemen PB, 2001. On the conditions for lower crustal convective instability.
Geophysical Research Letters 106(B4):6423-6446 doi:10.1029/2000JB900357

A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - P - Q - R - S - T - U - V - W - X - Y - Z

Kamenetsky VS, Eggins SM, Crawford AJ, Green DH, Gasparon M, Falloon TJ, 1998. Calcic melt inclusions in primitive olivine at 43°N MAR: evidence for melt-rock reaction/melting involving clinopyroxene-rich lithologies during MORB generation.
Earth and Planetary Science Letters 160(1-2):115-132 doi:10.1016/S0012-821X(98)00090-9

Kamenetsky VS, Maas R, 2002. Mantle-melt Evolution (Dynamic Source) in the Origin of a Single MORB Suite: a Perspective from Magnesian Glasses of Macquarie Island.
Journal of Petrology 43(10):1909-1922 doi:10.1093/petrology/43.10.1909

Karason H, van der Hilst R, 2000. Constraints on mantle convection from seismic tomography.
American Geophysical Union, Geophysical Monograph p 277-288 doi:10.1029/GM121

Karato S, Wu P, 1993. Rheology of the upper mantle: a synthesis.
Science 260:771–778 doi:10.1126/science.260.5109.771

Katz RF, Spiegelman M, Langmuir CH, 2003. A new parameterization of hydrous mantle melting
Geochem. Geophys. Geosyst. 4:1073 doi:10.1029/2002GC000433

Katz RF, Spiegelman, M, Holtzman, B, 2006. The dynamics of melt and shear localization in partially molten aggregates.
Nature 442, 676–679. doi:10.1038/nature05039

Kawamoto T, Hirose K, 1994. Au-Pd sample containers for melting experiments on iron and water bearing systems.
European Journal of Mineralogy 6(3):381-385

Kay RW, Kay SM, 1988. Petrology and geochemistry of the lower continental crust: an overview.
In: Dawson JB, Carswell DA, Hall J, K.H W (eds) The nature of the lower continental crust, Geol. Soc. London Spec. Pub, London doi:10.1144/GSL.SP.1986.024.01.14

Kelemen PB, 1990. Reaction between ultramafic rock and fractionating basaltic magma I. Phase relations, the origin of calc-alkaline magma series, and the formation of discordant dunite.
Journal of Petrology 31(1),51-98 doi:10.1093/petrology/31.1.51

Kelemen PB, Joyce DB, Webster JD, Holloway JR, 1990. Reaction Between Ultramafic Rock and Fractionating Basaltic Magma II. Experimental Investigation of Reaction Between Olivine Tholeiite and Harzburgite at 1150-1050°C and 5 kb.
Journal of Petrology 31(1):99-134 doi:10.1093/petrology/31.1.99

Kelemen PB, Shimizu N, Salters VJM, 1995. Extraction of mid-ocean-ridge basalt from the upwelling mantle by focused flow of melt in dunite channels.
Nature 375(6534):747-753 doi:10.1038/375747a0

Kelemen PB, Whitehead JA, Aharanov E, Jordahl KA, 1995. Experiments on flow focusing in soluble porous media, with applications to melt extraction from the mantle.
Journal of Geophysical Research 100:475-496 doi:10.1029/94JB02544

Kelemen PB, Hirth G, Shimizu N, Spiegelman M, Dick HJB, 1997. A review of melt migration processes in the adiabatically upwelling mantle beneath oceanic spreading ridges. .
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 355(1723):283-318 doi:10.1098/rsta.1997.0010

Kelley KA, Plank T, Grove TL, Stolper EM, 2006. Mantle melting as a function of water content beneath back-arc basins.
Journal of Geophysical Research 111(B09208) doi:10.1029/2005JB003732

Kellogg LH, Turcotte DL, 1987. Homogenization of the mantle by convective mixing and diffusion.
Earth and Planetary Science Letters 81:371-378 doi:10.1016/0012-821X(87)90124-5

Kellogg LH, 1992. Mixing in the Mantle.
Annual Review of Earth and Planetary Sciences 20:365-388 doi:10.1146/annurev.ea.20.050192.002053

Kerr AC, Saunders AD, Tarney AD, Berry NH, Hards VL, 1995. Depleted mantle-plume geochemical signatures: no paradox for plume theories.
Geology 23:843-846 doi:10.1130/0091-7613(1995)023<0843:DMPGSN>2.3.CO;2

Keshav S, Gudfinnsson GH, Sen G, Fei Y, 2004. High-pressure melting experiments on garnet clinopyroxenite and the alkalic to tholeiitic transition in ocean-island basalts.
Earth and Planetary Science Letters 223(3-4):365-379 doi:10.1016/j.epsl.2004.04.029

Kinzler RJ, Grove TL, 1992. Primary magmas of Mid-Ocean Ridge Basalts 1. Experiments and Methods.
Journal of Geophysical Research 97(B5):6885-6906 doi:10.1029/91JB02840

Kinzler RJ, Grove TL, 1992. Primary magmas of Mid-Ocean Ridge Basalts 2. Applications.
Journal of Geophysical Research 97(B5):6907-6926 doi:10.1029/91JB02841

Kinzler RJ, Grove TL, 1993. Corrections and further discussion of Primary magmas of Mid-Ocean Ridge Basalts, 1 and 2.
Journal of Geophysical Research 98(B12):22339-22347 doi:10.1029/93JB02164

Kinzler RJ, 1997. Melting of mantle peridotite at pressures approaching the spinel to garnet transition: Application to mid-ocean ridge basalt petrogenesis.
Journal of Geophysical Research 102(B1):853-874 doi:10.1029/96JB00988

Klein EM, Langmuir CH, 1987. Global Correlations of Ocean Ridge Basalt Chemistry with Axial Depth and Crustal Thickness.
Journal of Geophysical Research 92(B8):8089-8115 doi:10.1029/JB092iB08p08089

Klein EM, Langmuir CH, 1989. Local Versus Global Variations in Ocean Ridge Basalt Composition: A Reply.
Journal of Geophysical Research 94(B4):4241-4252 doi:10.1029/JB094iB04p04241

Klein EM, 2003. Earth science: spread thin in the Artic.
Nature 423:932-933 doi:10.1038/423932a

Klein EM, 2003. Geochemistry of the igneous oceanic crust.
In: Rudnick RL (ed) The crust, vol 3. Oxford , pp 433-463 doi:10.1016/B0-08-043751-6/03030-9

Klügel A, Klein EM, 2006. Complex magma storage and ascent at embryonic submarine volcanoes from the Madeira Archipelago.
Geology 34:337-340 doi:10.1130/G22077.1

Kogiso T, Hirose K, Takahashi E, 1998. Melting experiments on homogeneous mixtures of peridotite and basalt: application to the genesis of ocean island basalts.
Earth and Planetary Science Letters 162(1-4):45-61 doi:10.1016/S0012-821X(98)00156-3

Kogiso T, Hirschmann M, 2001. Experimental study of clinopyroxenite partial melting and the origin of ultra-calcic melt inclusions.
Contributions to Mineralogy and Petrology 142(3):347-360 doi:10.1007/s004100100295

Kogiso T, Hirschmann MM, Frost DJ, 2003. High-pressure partial melting of garnet pyroxenite: possible mafic lithologies in the source of ocean island basalts.
Earth and Planetary Science Letters 216(4):603-617 doi:10.1016/S0012-821X(03)00538-7

Kogiso T, Hirschmann MM, Pertermann M, 2004. High-pressure Partial Melting of Mafic Lithologies in the Mantle.
Journal of Petrology 45(12):2407-2422 doi:10.1093/petrology/egh057

Kogiso T, Hirschmann MM, Reiners PW, 2004. Length scales of mantle heterogeneities and their relationship to ocean island basalt geochemistry.
Geochimica et Cosmochimica Acta 68(2):345-360 doi:10.1016/S0016-7037(03)00419-8

Kogiso T, Hirschmann MM, 2006. Partial melting experiments of bimineralic eclogite and the role of recycled mafic oceanic crust in the genesis of ocean island basalts.
Earth and Planetary Science Letters 249(3-4):188-199 doi:10.1016/j.epsl.2006.07.016

Kohlstedt DL, 1991. Structure, rheology, and permeability of partially molten rocks at low melt fractions.
Geophysical Monograph, American Geophysical Union , vol 71, pp 103-122 doi:10.1029/GM071p0103

Kohlstedt DL, Mackwell SJ, 1998. Diffusion of hydrogen and intrinsic points defects in olivine.
Zeitschrift für Physikalische Chemie 207:147-162 doi:10.1524/zpch.1998.207.Part_1_2.147

Kokfelt T, Hoernle K, Hauff F, Fiebig J, Werner R, Garbe-Schönberg D, 2006. Combined trace element and Pb-Nd-Sr-O isotope evidence for recycled oceanic crust (upper and lower) in the Iceland mantle plume.
Journal of Petrology 47(9):1705–1749 doi:10.1093/petrology/egl025

Kokfelt T, Hoernle K, Hauff F, 2003. Upwelling and melting of the Iceland plume from radial variation of 238U-230Th disequilibria in postglacial volcanic rocks.
Earth and Planetary Science Letters 214(1-2):167–186 doi:10.1016/S0012-821X(03)00306-6

Koornneef JM, Stracke A, Bourdon B, Grönvold K, 2012. The influence of source heterogeneity on the U–Th–Pa–Ra disequilibria in postglacial tholeiites from Iceland.
Geochimica et Cosmochimica Acta 87:243–266 doi:10.1016/j.gca.2012.03.041

Koornneef JM, Stracke A, Bourdon B, Meier MA, Jochum KP, Stoll B, Grönvold K, 2012. Melting of a two-component source beneath Iceland.
Journal of Petrology 53:127-157 doi:10.1093/petrology/egr059

Korenaga J, Kelemen PB, 2000. Major element heterogeneity in the mantle source of the north Atlantic igneous province.
Earth and Planetary Science Letters 184:251-268 doi:10.1016/S0012-821X(00)00308-3

Kornprobst J, 1969. Le massif ultrabasique des Beni Bouchera (Rif Interne, Maroc): Etude des peridotites de haute température et de haute pression, et des pyroxenolites, a grenat ou sans grenat, qui leur sont associes.
Contributions to Mineralogy and Petrology 23(4):283-322 doi:10.1007/BF00371425

Kornprobst J, 1970. Les peridotites et les pyroxenolites du massif ultrabasique des Beni Bouchera: une etude experimentale entre 1100 et 1550°C sous 15 a 30 kilobars de pression seche.
Contributions to Mineralogy and Petrology 29:290-309 doi:10.1007/BF00371277

Kornprobst J, 1971. Contribution à l'étude pétrographique et structurale de la zone interne du Rif.
Thèse, Faculté des sciences de Paris pp 376

Kornprobst J, 1974. Contribution à l'étude pétrographique et structurale de la zone interne du Rif (Maroc Septentrional).
In: Notes et Mémoires du service géologique du Maroc N°251, pp 256

Kornprobst J, Piboule M, Roden M, Tabit A, 1990. Corundum-bearing Garnet Clinopyroxenites at Beni Bousera (Morocco): Original Plagioclase-rich Gabbros Recrystallized at Depth within the Mantle?
Journal of Petrology 31(3):717-745 doi:10.1093/petrology/31.3.717

Kubo K, 2002. Dunite Formation Processes in Highly Depleted Peridotite: Case Study of the Iwanaidake Peridotite, Hokkaido, Japan.
Journal of Petrology 43(3):423-448 doi:10.1093/petrology/43.3.423

Kumar N, Reisberg L, Zindler A, 1996. A major and trace element and strontium, neodymium, and osmium isotopic study of a thick pyroxenite layer from the Beni Bousera Ultramafic Complex of northern Morocco.
Geochimica et Cosmochimica Acta 60(8):1429-1444 doi:10.1016/0016-7037(95)00443-2

Kuno H, Aoki K-I, 1970. Chemistry of ultramafic nodules and their bearing on the origin of basaltic magmas.
Physics of The Earth and Planetary Interiors 3:273-301 doi:10.1016/0031-9201(70)90065-8

Kushiro I, 1968. Compositions of magmas formed by partial zone melting of the Earth's upper mantle.
Journal of Geophysical Research 73(2):619-634 doi:10.1029/JB073i002p00619

Kushiro I, Syono Y, Akimoo S, 1968. Melting of a peridotite nodule at high pressures and high water pressures.
Journal of Geophysical Research 73:6,023-026,029 doi:10.1029/JB073i018p06023

Kushiro I, 1969. The system forsterite-diopside-silica with and without water at high pressures.
American Journal of Science, Schairer vol. 267(A):269-294

Kushiro I, 1972. Effect of water on the composition of magmas formed at high pressures.
Journal of Petrology 13:311-334 doi:10.1093/petrology/13.2.311

Kushiro I, Yoder HS, 1974. Formation of eclogite from garnet lherzolite: liquidus relations in a portion of the system MgSiO3–CaSiO3–Al2O3 at high pressures.
Carnegie Institution of Washington, Yearbook 73

Kushiro I, 1975. On the nature of silicate melt and its significance in magma genesis: regularities in the shift of the liquidus boundaries involving olivine, pyroxene, and silica minerals.
American Journal of Science 275:411-431 doi:10.2475/ajs.275.4.411

Kushiro I, 1996. Partial melting of a fertile mantle peridotite at high pressures: an experimental study using aggregates of diamond.
In: Basu A, Hart S (eds) Earth Processes: Reading the Isotopic Code, vol 95. Geophysical Monogaph p 109-122 doi:10.1029/GM095p0109

Kushiro I, Walker MJ, 1998. Mg-Fe partitioning between olivine and mafic-ultramafic melts.
Geophysical Research Letters 25:2337-2340 doi:10.1029/98GL01844

Kushiro I, Mysen BO, 2002. A possible effect of melt structure on the Mg-Fe2+ partitioning between olivine and melt.
Geochimica et Cosmochimica Acta 66:2267-2272 doi:10.1016/S0016-7037(01)00835-3

A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - P - Q - R - S - T - U - V - W - X - Y - Z

La Tourette TK, Kennedy AK, Wassenburg GJ, 1993. Thorium-Uranium fractionation by garnet: evidence for a deep source and rapid rise of oceanic basats.
Science 261:739-742 doi:10.1126/science.261.5122.739

Lacroix A, 1893. Les enclaves des roches volcaniques
Mâcon, Protat Frères Imprimeurs. pp 710

Lambart S, Laporte D, Schiano P, 2009. An experimental study of pyroxenite partial melts at 1 and 1.5 GPa: Implications for the major-element composition of Mid-Ocean Ridge Basalts.
Earth and Planetary Science Letters 288(1-2):335-347 doi:10.1016/j.epsl.2009.09.038

Lambart S, Laporte D, Schiano P, 2009. An experimental study of focused magma transport and basalt-peridotite interactions beneath mid-ocean ridges: implications for the generation of primitive MORB composition.
Contributions to Mineralogy and Petrology 157(429-451) doi:10.1007/s00410-008-0344-7

Lambart S, Laporte D, Provost A, Schiano P, 2012. Fate of pyroxenite-derived melts in the peridotitic mantle: Thermodynamical and experimental constraints.
Journal of Petrology 53(3):451-476 doi:10.1093/petrology/egr068


Lambart S, Laporte D, Schiano P, 2013. Markers of the pyroxenite contribution on the major-element compositions of oceanic basalts: Review of the experimental constraints
Lithos" 160-161:14-36 doi:10.1016/j.lithos.2012.11.018

Langmuir CH, Bender JF, Bence AE, Hanson GN, Taylord SR, 1977. Petrogenesis of basalts from the FAMOUS area: Mid-Atlantic ridge.
Earth and Planetary Science Letters 36:133-156 doi:10.1016/0012-821X(77)90194-7

Langmuir CH, Klein EM, Plank T, 1992. Petrological Systematics of Mid-Ocean Ridge Basalts: Constraints on Melt Generation Beneath Ocean Ridges.
American Geophysical Union Monograph 71:183-280 doi:10.1029/GM071p0183

Laporte D, Toplis M, Seyler M, Devidal J-L, 2004. A new experimental technique for extracting liquids from peridotite at very low degrees of melting: application to partial melting of depleted peridotite.
Contributions to Mineralogy and Petrology 146(4):463-484 doi:10.1007/s00410-003-0509-3

Laporte D, Schiano P, Boivin P, 2006. The composition of low degree melts of fertile peridotites at 1 and 1.3 GPa.
Geophysical Research Abstracts Vol. 8, 04709

Laske G, Phipp Morgan J, Orcutt JA, 1999. First results from the Hawaiian swell experiment.
Geophysical Research Letters 26:3397-3400 doi:10.1029/1999GL005401

Lassister JC, Hauri EH, Reiners PW, Garcia MO, 2000. Generation of Hawaiian post-erosional lavas by melting of a mixed lherzolite/pyroxenite source.
Earth and Planetary Science Letters 178:269-284 doi:10.1016/S0012-821X(00)00084-4

Laubier M, Schiano P, Doucelance R, Ottolini L, Laporte D, 2007. Olivine-hosted melt inclusions and melting processes beneath the FAMOUS zone (Mid-Atlantic Ridge).
Chemical Geology 240(1-2):129-150 doi:10.1016/j.chemgeo.2007.02.002

Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B, 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram.
Journal of Petrology 27, 745-750. doi:10.1093/petrology/27.3.745

Le Bas MJ, 1989. Nephelinitic and basanitic rocks.
Journal of Petrology 30:1299-1312 doi:10.1093/petrology/30.5.1299

Le Roux PJ, Le Roex AP, Schilling J-G, Shimizu N, Perkins WW, Pearce NJG, 2002. Mantle heterogeneity beneath the southern Mid-Atlantic Ridge: trace element evidence for contamination of ambient asthenospheric mantle.
Earth and Planetary Science Letters 203(1):479-498 doi:10.1016/S0012-821X(02)00832-4

Le Roux PJ, Le Roex AP, Schilling J-G, 2002. MORB Melting Processes Beneath the Southern Mid-Atlantic Ridge (40-55° S): A Role for Mantle Plume-Derived Pyroxenite.
Contributions to Mineralogy and Petrology 144:206-229 doi:10.1007/s00410-002-0376-3

Lee CTA, Cheng X, Horodyskyj U, 2006. The development and refinement of continental arcs by primary basaltic magmatism, garnet pyroxenite accumulation, basaltic recharge and delamination: insights from the Sierra Nevada, California. .
Contributions to Mineralogy and Petrology 151:222-242 doi:10.1007/s00410-005-0056-1

Lenoir X, Garrido CJ, Bodinier J-L, Dautria J-M, Gervilla F, 2001. The recrystallization front of the Ronda peridotite: evidence for melting and thermal erosion of subcontinental lithospheric mantle beneath the Alboran Basin.
Journal of Petrology 42 (1), 141-158. doi:10.1093/petrology/42.1.141

Lesher CE, Walker D, 1988. Cumulate maturation and melt migration in a temperature gradient.
Journal of Geophysical Research 93:10295-10311 doi:10.1029/JB093iB09p10295

Li X, Kind R, Priestley K, Sobolev SV, Tilmann F, Yuan X, Weber M, 2000. Mapping the Hawaiian plume conduit with converted seismic waves.
Nature 405(6789):938-941 doi:10.1038/35016054

Lissenberg CJ, Dick HJB, 2008. Melt-rock reaction in the lower oceanic crust and its implications for the genesis of mid-ocean ridge basalt.
Earth and Planetary Science Letters 271:311-325 doi:10.1016/j.epsl.2008.04.023

Liu T-C, Chen B-S, Pan J-J, Chen P-K, Wu S-Z, 1997. A preliminary report of the experimental study of two-pyroxene andesite from Kuanyinshan, Northern Taiwan.
Journal of Taiwan Normal University: Mathematics, Science & Technology 42:53-59

Liu T-C, Presnall DC, 2000. Liquidus phase relations in the system CaO-MgO-Al2O3-SiO2 at 2.0 GPa: application to basalt formation, eclogites and igneous sapphirine.
Journal of Petrology 41:3-20 doi:10.1093/petrology/41.1.3

Liu X, O'Neill HSC, 2004. The effect of Cr2O3 on the partial melting of spinel lherzolite in the system CaO-MgO-Al2O3-SiO2-Cr2O3 at 1.1 GPa.
Journal of Petrology 45(11):2261-2286 doi:10.1093/petrology/egh055

Liu X, O'Neill HSC, 2004. Partial Melting of Spinel Lherzolite in the System CaO–MgO–Al2O3–SiO2 ± K2O at 1.1 GPa.
Journal of Petrology 45(7):1339-1368 doi:10.1093/petrology/egh021

Liu X, O'Neill HSC, 2007. Effects of P2O5, TiO2 on the partial melting of spinel lherzolite in the system CaO-MgO-Al2O3-SiO2 at 1.1 GPa.
The Canadian Mineralogist 45:649-655 doi:10.2113/​gscanmin.45.3.649

Liu Y, Gao S, Lee C-TA, Hu S, Liu X, Yuan H, 2005. Melt-peridotite interactions: Links between garnet pyroxenite and high-Mg# signature of continental crust.
Earth and Planetary Science Letters 234:39-57 doi:10.1016/j.epsl.2005.02.034

Longhi J, 1995. Liquidus equilibria of some primary lunar and terrestrial melts in the garnet stability field.
Geochimica et Cosmochimica Acta 59(11):2375-2386 doi:10.1016/0016-7037(95)00111-C

Longhi J, Bertka CM, 1996. Graphical analysis of pigeonite-augite liquidus equilibria.
American Mineralogist 81:685-695

Longhi J, 2002. Some phase equilibrium systematics of lherzolite melting: I.
Geochem. Geophys. Geosyst. 3(3):1020 doi:10.1029/2001GC000204

Longui J, Walker D, Hays JF, 1978. The distribution of Fe and Mg between olivine and lunar basaltic liquids.
Geochimica et Cosmochimica Acta 42:1545-1558 doi:10.1016/0016-7037(78)90025-X

Loubet M, Allègre CJ, 1982. Trace elements in orogenic lherzolites reveal the complex history of the upper mantle.
Nature 298:809-814 doi:10.1038/298809a

Lundstrom CC, Gill J, Williams Q, 2000. A geochemically consistent hypothesis for MORB generation.
Chemical Geology 162(2):105-126 doi:10.1016/S0009-2541(99)00122-9

Luth WC, Ingamells CO, 1965. Gel preparation of starting materials for hydrothermal experimentation.
American Mineralogist 50:255-258

A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - P - Q - R - S - T - U - V - W - X - Y - Z

Maaløe S, Wyllie PJ, 1979. The join grossularite–pyrope at 30 kb and its petrological significance.
American Journal of Science 279:288-301 doi:10.2475/ajs.279.3.288

Maaløe S, James D, Smedley P, Petersen S, Garmann LB, 1992. The Koloa Volcanic Suite of Kauai, Hawaii.
Journal of Petrology 33(4):761-784 doi:10.1093/petrology/33.4.761

Macdonald K, Sempere JC, Fox PJ, 1984. East Pacific Rise from Siqueiros to Orozco fracture zones: along-strike continuity of axial neovolcanic zone and structure and evolution of overlapping spreading centers.
Journal of Geophysical Research 89:6049-6069 doi:10.1029/JB089iB07p06049

MacGregor ID, Carter JL, 1970. The chemistry of clinopyroxenes and garnets of eclogite and peridotite xenoliths from the Roberts Victor Mine, South Africa.
Physics of The Earth and Planetary Interiors 3:391-397 doi:10.1016/0031-9201(70)90081-6

Maclennan J, McKenzie D, Grönvold K, Slater K, 2001. Plume-driven upwelling under central Iceland.
Earth and Planetary Science Letters 194(1-2):67–82 doi:10.1016/S0012-821X(01)00553-2

Maclennan J, McKenzie D, Grönvold K, Slater K, 2001. Crustal accretion under northern Iceland.
Earth and Planetary Science Letters 191(3-4):295-310 doi:10.1016/S0012-821X(01)00420-4

Maclennan J, McKenzie D, Hilton F, Grönvold K, Shimizu N, 2003. Geochemical variability in a single flow from northern Iceland.
Journal of Geophysical Research 108(B1):ECV4(1-21) doi:10.1029/2000JB000142

Maclennan J, 2008. Lead isotope variability in olivine-hosted melt inclusions from Iceland.
Geochimica et Cosmochimica Acta 72(16):4159–4176 doi:10.1016/j.gca.2008.05.034

Maclennan J, Fujii T, Orihashi Y, Yasuda AY, Hirata T, 2008. Concurrent mixing and cooling of melts under Iceland.
Journal of Petrology 49(11):1931–1953 doi:10.1093/petrology/egn052

Magnani M, Fujii T, Orihashi Y, Yasuda AY, Hirata T, 2006. Evidence of primitive melt heterogeneities preserved in plagioclase-hosted melt inclusions of South Atlantic MORB.
Geochemical Journal 40:277-290

Mallik A, Dasgupta R, 2012. Reaction between MORB-eclogite derived melts and fertile peridotite and generation of ocean island basalts.
Earth and Planetary Science Letters 329-330:97-108 doi:10.1016/j.epsl.2012.02.007

Marchesi C, Garrido CJ, Bosch D, Bodinier JL, Gervilla F, 2011. Mantle refertilization by garnet pyroxenite melts: Evidence from the Ronda peridotite massif and southern Spain.
American Geophysical Union, Fall Meeting 2011, San Francisco, USA. abstract #DI51A-2114

Mattey D, Macpherson C, 1993. High-precision oxygen isotope microanalysis of ferromagnesian minerals by laser-fluorination.
Chemical Geology 105:305-318 doi:10.1016/0009-2541(93)90133-4

Mattey D, Lowry D, Macpherson C, 1994. Oxygen isotope composition of mantle peridotite.
Earth and Planetary Science Letters 128:231-241 doi:10.1016/0012-821X(94)90147-3

Mazzucchelli M, Rivalenti G, Brunelli D, Zanetti A, Boari E, 2009. Formation of Highly Refractory Dunite by Focused Percolation of Pyroxenite-Derived Melt in the Balmuccia Peridotite Massif (Italy).
Journal of Petrology 50(7):1205-1233 doi:10.1093/petrology/egn053

Mazzucchelli M, Rivalenti G, Brunelli D, Zanetti A, Boari E, 2009. Formation of Highly Refractory Dunite by Focused Percolation of Pyroxenite-Derived Melt in the Balmuccia Peridotite Massif (Italy).
Journal of Petrology 50(7):1205-1233 doi:10.1093/petrology/egn053

McDade P, Wood BJ, Van Westrenen W, Brooker R, Gudmundsson G, Soulard H, Najorka J, Blundy J, 2002. Pressure corrections for a selection of piston-cylinder cell assemblies
Mineralogical Magazine 66(6):1021-1028 doi:10.1180/​0026461026660074

McKenzie D, Roberts J, Weiss N, 1973. Numerical models of convection in the Earth's mantle.
Tectonophysics 19:89-103 doi:10.1016/0040-1951(73)90034-6

McKenzie D, O'Nions RK, 1983. Mantle reservoirs and ocean island basalts.
Nature 301:229-331 doi:10.1038/301229a0

McKenzie D, Bickle MJ, 1988. The Volume and Composition of Melt Generated by Extension of the Lithosphere.
Journal of Petrology 29(3):625-679 doi:10.1093/petrology/29.3.625

McKenzie D, O'Nions RK, 1991. Partial Melt Distributions from Inversion of Rare Earth Element Concentrations.
Journal of Petrology 32(5):1021-1091 doi:10.1093/petrology/32.5.1021

Médard E, Schmidt MW, Schiano P, 2004. Liquidus surfaces of ultra-calcic primitive melts: formation conditions and sources.
Contributions to Mineralogy and Petrology 148:201-215 doi:10.1007/s00410-004-0591-1

Médard E, Schmidt MW, Schiano P, Ottolini L, 2006. Melting of Amphibole-bearing Wehrlites: an Experimental Study on the Origin of Ultra-calcic Nepheline-normative Melts.
Journal of Petrology 47(3):481-504 doi:10.1093/petrology/egi083

Meibom A, Anderson DL, 2003. The statistical upper mantle assemblage.
Earth and Planetary Science Letters 217:123-139 doi:10.1016/S0012-821X(03)00573-9

Melcher F, Meisel T, Puhl J, Koller F, 2002. Petrogenesis and geotectonic setting of ultramafic rocks in the Eastern Alps: constraints from geochemistry.
Lithos 65:69-112 doi:10.1016/S0024-4937(02)00161-5

Melson WG, O'Hearn T, 2003. Smithsonian volcanic glass file.
Petrological Database of the Ocean Floor

MELT seismic team, 1998. Imaging the deep seismic structure beneath a mid-ocean ridge.
Science 280:1215-1218 doi:10.1126/science.280.5367.1215

Menke W, 1999. Crustal isostasy indicates anomalous densities beneath Iceland.
Geophysical Research Letters 26(9):1215-1218 doi:10.1029/1999GL900202

Merrill RB, Wyllie PJ, 1973. Absorption of iron by platinum capsules in high pressure rock melting experiments.
American Mineralogist 58:16-20

Meysen CM, Ludden JN, Humler E, Luais B, Toplis MJ, Mével C, Storey M, 2005. New insights into the origin and distribution of the DUPAL isotope anomaly in the Indian Ocean mantle from MORB of the Southwest Indian Ridge.
Geochemistry, Geophysics, Geosystems 6(11) doi:10.1029/2005GC000979

Michael PJ, 1988. The concentration, behaviour, storage of H2O in the suboceanic upper mantle: implications for mantle metasomatism.
Geochimica et Cosmochimica Acta 52:555-566 doi:10.1016/0016-7037(88)90110-X

Michael PJ, Schilling J-G, 1989. Chlorine in mid-ocean ridge magmas: evidence for assimilation of seawater-influenced components.
Geochimica et Cosmochimica Acta 53:3131-3143 doi:10.1016/0016-7037(89)90094-X

Michael PJ, 1995. Regionally distinctive sources of depleted MORB: evidence from trace elements and H2O.
Earth and Planetary Science Letters 131:301-320 doi:10.1016/0012-821X(95)00023-6

Michael PJ, Langmuir CH, Dick, H.J.B., Snow, J.E., Goldstein, S.L., Graham, D.W., Lehnert, K., Kurras, G., Jokat, W., Mühe, R., Edmonds, H.N., 2003. Magmatic and amagmatic seafloor generation at the ultraslow-spreading Gakkel ridge, Arctic Ocean.
Nature 423:956-961 doi:10.1038/nature01704

Milholland CS, Presnall DC, 1998. Liquidus phase relations in the CaO-MgO-Al2O3-SiO2 system at 3.0 GPa; the aluminous pyroxene thermal divide and high pressure fractionation of picrite and komatiitic magmas.
Journal of Petrology 39:3-27 doi:10.1093/petroj/39.1.3

Moine BN, Cottin JY, Sheppard SMF, Grégoire M, O'Reilly SY, Giret A, 2000. Incompatible trace element and isotopic (D/H) characteristics of amphibole- and phlogopite-bearing ultramafic to mafic xenoliths from Kerguelen Islands (TAAF, South Indian Ocean).
European Journal of Mineralogy 12(4): 761-777 doi:10.1127/​0935-1221/​2000/​0012-0761

Montanini A, Tribuzio R, Thirlwall M, 2006. Garnet pyroxenite layers from the mantle peridotites of the Northern Apennine ophiolites, Italy: Evidence for recycling of crustal material?
Geochimica et Cosmochimica Acta 70(18-1):A426 doi:10.1016/j.gca.2006.06.858

Morgan WJ, 1971. Convection plumes in the lower mantle.
Nature 230:42-43 doi:10.1038/230042a0

Morgan Z, Liang Y, 2003. An experimental and numerical study of the kinetics of harzburgite reactive dissolution with applications to dunite dike formation.
Earth and Planetary Science Letters 214(1-2):59-74 doi:10.1016/S0012-821X(03)00375-3

Morgan Z, Liang Y, 2005. An experimental study of the kinetics of lherzolite reactive dissolution with applications to melt channel formation.
Contributions to Mineralogy and Petrology 150(4):369-385 doi:10.1007/s00410-005-0033-8

Mysen BO, Kushiro I, 1977. Compositional variations of coexisting phases with degree of melting of peridotite in the upper mantle.
American Mineralogist 62:843-865

Mysen BO, Ryerson FJ, Virgo D, 1980. The influence of TiO2 on the structure, derivative properties of silicate melts.
American Mineralogist 65:1150-1165

A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - P - Q - R - S - T - U - V - W - X - Y - Z

Nauret F, Abouchami W, Galer SJG, Hofmann AW, Hémond C, Chauvel C, Dyment J, 2006. Correlated trace element-Pb isotope enrichments in Indian MORB along 10°-20°S, Central Indian Ridge.
Earth and Planetary Science Letters 245:137-152 doi:10.1016/j.epsl.2006.03.015

Navon O, Stolper EM, 1987. Geochemical consequences of melt percolation - the upper mantle as a chromatographic column.
The Journal of Geology 95:285-307

Neal CR, Taylor LA, Davidson JP, Holden P, Halliday AN, Nixon PH, Paces JB, Clayton RN, Mayeda TK, 1990. Eclogites with oceanic crustal and mantle signatures from the Bellsbank kimberlite, South Africa, Part 2: Sr, Nd, and O isotope geochemistry.
Earth and Planetary Science Letters 99:362-379 doi:10.1016/0012-821X(90)90140-S

Neumann ER, Marti J, Mitjavila J, Wulff-Pedersen E, 1999. Origin and implications of mafic xenoliths associated with Cenozoic extension-related volcanism in the Valencia Trough, NE Spain.
Mineralogy and Petrology 65:113-139 doi:10.1007/BF01161579

Nicholls IA, Ringwood AE, 1973. Effect of water on olivine stability in tholeiites and production of silica-saturated magmas in the island arc environment.
Journal of Geology 81:285–306 doi:10.1086/627871

Nicholson H, Condomines M, Fitton JG, Fallick AE, Gronvöld K, Rogers G, 1991. Geochemical and isotopic evidence for crustal assimilation beneath krafla, Iceland.
Journal of Petrology 32:1005-1020 doi:10.1093/petrology/32.5.1005

Niu Y, Batiza R, 1991. An Empirical Method for Calculating Melt Compositions Produced Beneath Mid-Ocean Ridges: Application for Axis and Off-Axis (Seamounts) Melting.
Journal of Geophysical Research 96(B13):21753-21777 doi:10.1029/91JB01933

Niu Y, Waggoner DG, Sinton JM, Moahoney JJ, 1996. Mantle source heterogeneity and melting processes beneath seafloor spreading centers: The East Pacific Rise, 18°-19°S.
Journal of Geophysical Research 101(B12):27711-27733 doi:10.1029/96JB01923

Niu Y, 1997. Mantle Melting and Melt Extraction Processes beneath Ocean Ridges: Evidence from Abyssal Peridotites.
Journal of Petrology 38(8):1047-1074 doi:10.1093/petroj/38.8.1047

Niu Y, Batiza R, 1997. Trace element evidence from seamounts for recycled oceanic crust in the Eastern Pacific mantle.
Earth and Planetary Science Letters 148(3-4):471-483 doi:10.1016/S0012-821X(97)00048-4

Niu Y, Hekinian R, 1997. Spreading-rate dependence of the extent of mantle melting beneath ocean ridges.
Nature 385(6614):326-329 doi:10.1038/385326a0

Niu Y, Langmuir CH, Kinzler RJ, 1997. The origin of abyssal peridotites: a new perspective.
Earth and Planetary Science Letters 152(1-4):251-265 doi:10.1016/S0012-821X(97)00119-2

Niu Y, Collerson KD, Batiza R, Wendt JI, Regelous M, 1999. Origin od enriched-type mid-ocean ridge basalt at ridges far from mantle plumes: The East Pacific Rise at 11°20'N.
Journal of Geophysical Research 104(B4):7067-7087 doi:10.1029/1998JB900037

Niu Y, Regelous M, Wendt IJ, Batiza R, O'Hara MJ, 2002. Geochemistry of near-EPR seamounts: importance of source vs. process and the origin of enriched mantle component.
Earth and Planetary Science Letters 199:327-345 doi:10.1016/S0012-821X(02)00591-5

Niu Y, Wilson M, Humphreys EM, O’Hara MJ, 2011. The origin of intra-plate ocean island basalts (OIB): the lid effect and its geodynamic implications.
Journal of Petrology 52(7-8):1443-1468 doi:10.1093/petrology/egr030

Nolet G, Allen R, Zhao D, 2007. Mantle plume tomography.
Chemical Geology 241:248-263 doi:10.1016/j.chemgeo.2007.01.022

Norris JR, Herd CDK, 2006. The Yamato 980459 Liquidus at 10 to 20 Kilobars.
Lunar and Planetary Science conference XXXVII, League City, Texas.

A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - P - Q - R - S - T - U - V - W - X - Y - Z

Obata M, Dickey JS, 1976. Phase relations of mafic layers in the Ronda peridotite.
Carnegie Institution of Washington Yearbook 75:562-566

Obata M, 1980. The Ronda peridotite: garnet-spinel and plagioclase lherzolite facies and the P-T trajectories of a high temperature mantle intrusion.
Journal of Petrology 21:533-572 doi:10.1093/petrology/21.3.533

O'Hara MJ, Yoder HS, 1963. Partial melting of the mantle.
Carnegie Institution of Washington, Yearbook 62:66-71

O'Hara MJ, 1965. Primary magmas and the origin of basalts. Scottish
Journal of Geology 1:19-40 doi:10.1144/sjg01010019

O'Hara MJ, Yoder HS, 1967. Formation and fractionation of basic magmas at high pressures.
Scottish Journal of Geology 3:67-117 doi:10.1144/​sjg03010067

O'Hara MJ, Yoder HS, 1967. Formation and fractionation of basic magmas at high pressures.
Scottish Journal of Geology 3:67-117 doi:10.1144/sjg03010067

O'Hara MJ, 1968. Are Ocean Floor Basalts Primary Magma?
Nature 220(5168):683-686 doi:10.1038/220683a0

O'Hara MJ, 1968. The bearing of phase equilibria studies in synthetic and natural systems on the origin and evolution of basic and ultrabasic rocks.
Earth-Science Reviews 4:69-133 doi:10.1016/0012-8252(68)90147-5

O'Hara MJ, 1969. The relationship between liquid and crystals in univariant equilibria of four component systems, their application to the origin and melting of ultramafic rocks and refractories.
Progress in Experimental Petrology, First Report, NERC Supported Research Units in British Universities 1965–1968 1969a:114-120

O'Hara MJ, 1969. Quaternary invariant equilibria involving liquid; their application to the origin of mafic and ultramafic nodules in igneous rocks.
Progress in Experimental Petrology, First Report, NERC Supported Research Units in British Universities 1965–1968 1969b:120-128

O'Hara MJ, 1972. Data reduction and projection schemes for complex compositions.
In: Universities EaM (ed) Progress in experimental petrology - third progress report of research, NERC p 103-126

O'Hara MJ, 1977. Geochemical evolution during fractional crystallization of a periodically refilled magma chamber.
Nature 266:503-507 doi:10.1038/266503a0

O'Hara MJ, Mathews RE, 1981. Geochemical evolution in a advancing periodically replenished, periodically tapped and continuously fractionated magma chamber.
Journal of the Geological Society 138(3):237-277 doi:10.1144/gsjgs.138.3.0237

Orejanaa D, Villaseca C, Paterson BA, 2006. Geochemistry of pyroxenitic and hornblenditic xenoliths in alkaline lamprophyres from the Spanish Central System.
Lithos 86:167-196 doi:10.1016/j.lithos.2005.03.014

Osborn EF, Gee KH, Muan A, Roeder PL, Ulmer GC, 1969. Studies of phase equilibria in the systems: CaO-MgO-Al2O3-SiO2, CaO-MgO-Al2O3-TiO2-SiO2.
Bulletin of the Earth, Mineral Sciences - Experiment Station 85

Oxburgh ER, 1980. Heat flow and magma genesis.
In: Hargraves RB (ed) Physics of Magmatic Processes, Princeton University Press, Princeton p 161-199

A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - P - Q - R - S - T - U - V - W - X - Y - Z

Parman SW, Grove TL, 2004. Harzburgite melting with and without H2O: Experimental data and predictive modeling.
Journal of Geophysical Research 109(B2) doi:10.1029/2003jb002566

Pearson DG, Davies GR, Nixon PH, Milledge HJ, 1989. Graphitized diamonds from a peridotite massif in Morocco and implications for anomalous diamond occurences.
Nature 338:60-62 doi:10.1038/338060a0

Pearson DG, Davies GR, Nixon PH, Greenwood PB, Mattey DP, 1991. Oxygen isotope evidence for the origin of pyroxenites in Beni Bousera peridotite massif, North Morocco; derivation from subducted oceanic litosphere.
Earth and Planetary Science Letters 102:289-301 doi:10.1016/0012-821X(91)90024-C

Pearson DG, Davies GR, Nixon PH, 1993. Geochemical Constraints on the Petrogenesis of Diamond Facies Pyroxenites from the Beni Bousera Peridotite Massif, North Morocco.
Journal of Petrology 34(1):125-172 doi:10.1093/petrology/34.1.125

Pearson DG, Nixon PH, 1996. Diamonds in young orogenic belts: graphitised diamonds from Beni Bousera, N. Morocoo, a comparison with kimberlite-derived diamond occurences and implications for diamond genesis and exploration.
Africa Geoscience Reviews 3:295-316

Pearson DG, Canil D, Shirey S, 2003. Mantle samples included in volcanic rocks: xenoliths and diamonds.
Treatise on Geochemistry 2:171-276 doi:10.1016/B0-08-043751-6/02005-3

Pearson DG, Nowell GM, 2004. Re-Os and Lu-Hf Isotope Constraints on the Origin and Age of Pyroxenites from the Beni Bousera Peridotite Massif: Implications for Mixed Peridotite-Pyroxenite Mantle Sources.
Journal of Petrology 45(2):439-455 doi:10.1093/petrology/egg102

Peate DW, Baker JA, Jakobsson SP, Waight TE, Kent AJR, Grassineau NV, Skovgaard AC, 2009. Historic magmatism on the Reykjanes Peninsula, Iceland: a snap-shot of melt generation at a ridge segment.
Contributions to Mineralogy and Petrology 157(3):359–382 doi:10.1007/s00410-008-0339-4

Peltier R, 1996. Mantle viscosity and ice-age ice sheet topography.
Science 273:1359–1364 doi:10.1126/science.273.5280.1359

Pertermann M, Hirschmann MM, 2003. Anhydrous Partial Melting Experiments on MORB-like Eclogite: Phase Relations, Phase Compositions and Mineral-Melt Partitioning of Major Elements at 2-3 GPa.
Journal of Petrology 44(12):2173-2201 doi:10.1093/petrology/egg074

Pertermann M, Hirschmann MM, 2003. Partial melting experiments on a MORB-like pyroxenite between 2 and 3 GPa: Constraints on the presence of pyroxenite in basalt source regions from solidus location and melting rate.
Journal of Geophysical Research 108(B2):2125,pp17 doi:10.1029/2000JB000118

Peslier AH, Francis D, Ludden J, 2002. The lithospheric mantle beneath continental margins: melting and melt-rock reaction in Canadian Cordilliera xenoliths.
Journal of Petrology 43(11):2013-2047 doi:10.1093/petrology/43.11.2013

Phipps Morgan J, Forsyth DW, 1988. Three-dimensional flow and temperature perturbations due to a transform offset: Effects on oceanic crustal and upper mantle structure.
Journal of Geophysical Research 93:2955-2966 doi:10.1029/JB093iB04p02955

Phipps Morgan J, 2001. Thermodynamics of pressure release melting of a veined plum pudding mantle.
Geochemistry, Geophysics, Geosystems 2(4) doi:10.1029/2000GC000049

Piccardo GB, Vissers RLM, 2007. The pre-oceanic evolution of the Erro-Tobbio peridotite (Voltri Massif, Ligurian Alps, Italy).
Journal of Geodynamics 43(4-5):417-449 doi:10.1016/j.jog.2006.11.001

Pickering-Witter J, Johnston AD, 2000. The effects of variable bulk composition on the melting systematics of fertile peridotitic assemblages.
Contributions to Mineralogy and Petrology 140(2):190-211 doi:10.1007/s004100000183

Pietruszka AJ, Norman MD, Garcia MO, Marske JP, Burns DH, 2013. Chemical heterogeneity in the Hawaiian mantle plume from the alteration and dehydration of altered oceanic crust.
Earth and Planetary Science Letters 361, 298–309 doi:10.1016/j.epsl.2012.10.030

Pilet S, Hernandez J, Sylvester P, Poujol M, 2005. The metasomatic alternative for ocean island basalt chemical heterogeneity.
Earth and Planetary Science Letters 236:148-166 doi:10.1016/j.epsl.2005.05.004

Pilet S, Baker MB, Stolper EM, 2008. Metasomatized Lithosphere and the Origin of Alkaline Lavas.
Science 320(5878):916-919 doi:10.1126/science.1156563

Pilet S, Ulmer P, Villiger S, 2010. Liquid line of descent of a basanitic liquid at 1.5 Gpa: constraints on the formation of metasomatic veins.
Contributions to Mineralogy and Petrology 159(5):621-643 doi:10.1007/s00410-009-0445-y

Pilet S, Baker MB, Müntener O, Stolper EM, 2011. Monte Carlo simulations of metasomatic enrichment in the lithosphere and implications for the source of alkaline basalts.
Journal of Petrology 52(7-8):1415-1442 doi:10.1093/petrology/egr007

Plank T, Langmuir CH, 1992. Effects of the Melting Regime on the Composition of the Oceanic Crust.
Journal of Geophysical Research 97(B13):19749-19770 doi:10.1029/92JB01769

Polvé M, Allègre CJ, 1980. Orogenic lherzolite complexes studied by 87Rb-87Sr: a clue to understand the mantle convection processes?
Earth and Planetary Science Letters 51:71-93 doi:10.1016/0012-821X(80)90258-7

Porreca C, Selverstone J, Samuels K, 2006. Pyroxenite xenoliths from the Rio Puerco volcanic field, New Mexico: Melt metasomatism at the margin of the Rio Grande rift.
Geosphere 2(7):333-351 doi:10.1130/​GES00058.1

Porreca C, Selverstone J, Samuels K, 2006. Pyroxenite xenoliths from the Rio Puerco volcanic field, New Mexico: Melt metasomatism at the margin of the Rio Grande rift.
Geosphere 2:333-351 doi:10.1130/GES00058.1

Presnall DC, Dixon SA, Dixon JR, O'Donnell TH, Brenner NL, Schrock RL, Dycus DW, 1978. Liquidus phase relations on the join diopside-forsterite-anorthite at 1 atm to 20 kbar; their bearing on the generation and crystallization of basaltic magma.
Contributions to Mineralogy and Petrology 66:203-220 doi:10.1007/BF00372159

Presnall DC, Gudfinnson GH, Walter MJ, 2002. Generation of mid-ocean ridge basalts at pressure from 1 to 7 GPa.
Geochimica et Cosmochimica Acta 66:2073-2090 doi:10.1016/S0016-7037(02)00890-6

Press WH, Teukolsky SA, Vetterling WT, Flannery BP, 1992. Numerical Recipes in Fortran 77, Second Edition.
Cambridge University Press doi:10.2277/052143064X

Prytulak J, Elliott T, 2007. TiO2 enrichment in ocean island basalts.
Earth and Planetary Science Letters 263:388-403 doi:10.1016/j.epsl.2007.09.015

Prytulak J, Elliott T, 2007. TiO2 enrichment in ocean island basalts.
Earth and Planetary Science Letters 263:388-403 doi:10.1016/j.epsl.2007.09.015

Putirka KD, Johnson M, Kinzler RJ, Walker D, 1996. Thermobarometry of mafic igneous rocks based on clinopyroxene-liquid equilibria, 0-30 kbar.
Contributions to Mineralogy and Petrology 123:92-108 doi:10.1007/s004100050145

Putirka KD, 1999. Clinopyroxene+liquid equilibrium to 100 kbar and 2450 K.
Contributions to Mineralogy and Petrology 135:151-163 doi:10.1007/s004100050503

Putirka KD, Ryerson FJ, Mikaelian H, 2003. New igneous thermobarometers for mafic and evolved lava compositions, based on clinopyroxene + liquid equilibria.
American Mineralogist 88(10):1542-1554

Putirka KD, Perfit MR, Ryerson FJ, Jackson MG, 2007. Ambient and excess mantle temperatures, olivine thermometry, and active vs. passive upwelling.
Chemical Geology 241:177-206 doi:10.1016/j.chemgeo.2007.01.014

Putirka KD, 2008. Excess temperatures at ocean islands: Implications for mantle layering and convection.
Geology 36:283-286 doi:10.1130/G24615A.1

Putirka KD, 2008. Thermometers and Barometers for Volcanic Systems.
Reviews in Mineralogy & Geochemistry 69, pp 674

A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - Q - Q - R - S - T - U - V - W - X - Y - Z

Quick JE, 1981. Petrology and petrogenesis of the Trinity Peridotite, an upper mantle diapir in the Eastern Klamath Mountains, Northern California. .
Journal of Geophysical Research 86(B12):11,837-811,863 doi:10.1029/JB086iB12p11837

A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - Q - Q - R - S - T - U - V - W - X - Y - Z

Rampone E, Romairone A, Hofmann AW, 2004. Contrasting bulk and mineral chemistry in depleted mantle peridotites: evidence for reactive porous flow.
Earth and Planetary Science Letters 218(3-4):491-506 doi:10.1016/S0012-821X(03)00679-4

Reid I, Jackson HR, 1981. Oceanic spreading rate and crustal thickness.
Marine Geophysical Researches. 5(2):165-172 doi:10.1007/BF00163477

Reisberg LC, Allègre CJ, Luck JM, 1991. The Re-Os systematic of Ronda ultramafic complex of southern Spain.
Earth and Planetary Science Letters 105, 196-213. doi:10.1016/0012-821X(91)90131-Z

Remaïdi M, 1993. Etude pétrologique et géochimique d'une association de péridotites refractaires-pyroxenites dans le Massif de Ronda (Espagne).
Université de Montpellier II pp 437

Reverdatto VV, Selyatitskiy AY, Carswell DA, 2008. Geochemical distinctions between "crustal" and mantle-derived peridotites/pyroxenites in high/ultrahigh pressure metamorphic complexes.
Russian Geology and Geophysics 49(2):73-90 doi:10.1016/j.rgg.2008.01.002

Rhodes JM, Dungan MA, Blanchard DP, Long PE, 1979. Magma mixing at mid-ocean ridges: evidence form basalts drilled near 22°N on the mid-Atlantic ridge.
Tectonophysics 55:35-61 doi:10.1016/0040-1951(79)90334-2

Rhodes JM, Huang S, Frey FA, Pringle M, Xu G, 2012. Compositional diversity of Mauna Kea shield lavas recovered by the Hawaii Scientific Drilling Project: Inferences on source lithology, magma supply, and the role of multiple volcanoes
Geochemistry, Geophysics, Geosystems 13(3) doi:10.1029/2011GC003812

Rickers F, Fitchner A, Trampert J, 2013. The Iceland-Jan Mayen plume system and its impact on mantle dynamics in the North Atlantic region: Evidence from full-waveform inversion.
Earth and Planetary Science Letters 367:39-51 doi:10.1016/j.epsl.2013.02.022

Ringwood AE, 1962. A model for the upper mantle.
Journal of Geophysical Research 67(2):857-867 doi:10.1029/JZ067i002p00857

Ritsema J, Xu W, Stixrude L, Lithgow-Bertelloni C, 2009. Estimates of the transition zone temperature in a mechanically mixed upper mantle.
Earth and Planetary Science Letters 277(1-2):244–252 doi:10.1016/j.epsl.2008.10.024

Ritsema J, Jan van Heijst H, Woodhouse JH, 1999. Complex Shear Wave Velocity Structure Imaged Beneath Africa and Iceland
Science 286(5446):1925-1928 doi:10.1126/science.286.5446.1925

Robertson GS, Woodhouse JH, 1999. Constraints on lower mantle physical properties from seismology and mineral physics
Earth and Planetary Science Letters 143:197-205 doi:10.1016/0012-821X(96)00134-3

Robinson CJ, Bickle MJ, Minshull TA, White RS, Nichols ARL, 2001. Low degree melting under the Southwest Indian Ridge: the roles of mantle temperature, conductive cooling and wet melting.
Earth and Planetary Science Letters 188:383-398 doi:10.1016/S0012-821X(01)00329-6

Robinson JAC, Wood BJ, Blundy JD, 1998. The beginning of melting of fertile and depleted peridotite at 1.5 GPa.
Earth and Planetary Science Letters 155(1-2):97-111 doi:10.1016/S0012-821X(97)00162-3

Roeder PL, Emslie RF, 1970. Olivine-liquid equilibrium.
Contributions to Mineralogy and Petrology 29:275-289 doi:10.1007/BF00371276

Rubie DC, van der Hilst R, 2001. Processes and consequences of deep subduction: introduction.
Physics of the Earth and Planetary Interiors 127:1-7 doi:10.1016/S0031-9201(01)00217-5

Rudge JF, Maclennan J, Stracke A, 2013. The geochemical consequences of mixing melts from a heterogeneous mantle.
Geochimica et Cosmochimica Acta 114:112–143 doi:10.1016/j.gca.2013.03.042

A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - Q - Q - R - S - T - U - V - W - X - Y - Z

Saal AE, Hauri E, Langmuir CH, Perfit MR, 2002. Vapour undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth’s upper mantle.
Nature 419:451-455 doi:10.1038/nature01073

Salters VJM, Mallick S, Hart SR, Langmuir CE, Stracke A, 2011. Domains of depleted mantle: new evidence from hafnium and neodymium isotopes.
Geochemistry, Geophysics, Geosystems 12(8) doi:10.1029/2011GC003617

Salters VJM, Bourdon B, Elliott TE, 1994. Constraints on the MORB melting regime based on the Lu-Hf, Sm-Nd and U-Th systematics.
ICOG 8 Abst. 276

Salters VJM, Dick HJB, 2002. Mineralogy of the mid-ocean-ridge basalt source from neodymium isotopic composition of abyssal peridotites.
Nature 418(6893):68-72 doi:10.1038/nature00798

Santos JF, Schärer U, Gil Ibarguchui JI, Girardeau J, 2002. Genesis of pyroxenite-rich peridotite at Cabo Ortegal (NW Spain): geochemical and Pb-Sr-Nd isotope data.
Journal of Petrology 43(1):17-43 doi:10.1093/petrology/43.1.17

Schairer JF, Yoder HS, 1962. Pyroxenes : The system diopside-enstatite-silica.
In: Wasgington CI (ed) Ann. Rept. Dir. Geophys. Lab. p 75-82

Schiano P, Birck J-L, Allègre CJ, 1997. Osmium-strontium-neodymium-lead isotopic covariations in mid-ocean ridge basalt glasses and the heterogeneity of the upper mantle.
Earth and Planetary Science Letters 150(3-4):363-379 doi:10.1016/S0012-821X(97)00098-8

Schiano P, Eiler JM, Hutcheon ID, Stolper EM, 2000. Primitive CaO-rich and silica-undersaturated melts in island arcs: Evidence for the involvement of clinopyroxene-rich lithologies in the petrogenesis of arc magmas.
Geochemistry, Geophysics, Geosystems 1(5) doi:10.1029/1999GC000032

Schiano P, 2003. Primitive mantle magmas recorded as silicate melt inclusions in igneous minerals.
Earth-Science Reviews 63:121-144 doi:10.1016/S0012-8252(03)00034-5

Schmickler B, Jacob DE, Foley SF, 2004. Eclogite xenoliths from the Kuruman kimberlites, South Africa: geochemical fingerprinting of deep subduction and cumulate processes.
Lithos 75(1-2):173-207 doi:10.1016/j.lithos.2003.12.012

Schubert G, Turcotte DL, Olson P, 2001. Mantle convection in the Earth and planets.
Cambridge University Press doi:10.2277/0511037198

Schulze DJ, 1989. Constraints on the abundance of eclogite in the upper mantle.
Journal of Geophysical Research 94(B4):4205-4212 doi:10.1029/JB094iB04p04205

Schulze DJ, Valley JW, Viljoen KS, Spicuzza MJ, 2003. Constraints on the abundance of eclogite in the upper mantle.
Kimberlite Conference

Schwab BE, Johnston AD, 2001. Melting Systematics of Modally Variable and Compositionally Intermediate Peridotites and the Effects of Mineral Fertility.
Journal of Petrology 42(10):1789-1811 doi:10.1093/petrology/42.10.1789 /

Scott DR, 1992. Small-scale convection and mantle melting beneath mid-ocean ridges.
Geophysical Monograph 71:327-352 doi:10.1029/GM071p0327

Sen G, Leeman WP, 1991. Iron-rich lherzolitic xenoliths from Oahu: origin and implications from hawaiian magma sources.
Earth and Planetary Science Letters 102:45-57 doi:10.1016/0012-821X(91)90016-B

Sen IS, Bizimis M, Sen G, Huang S, 2011. A radiogenic Os component in the oceanic lithosphere? Constraints from Hawaiian pyroxenite xenoliths.
Geochimica et Cosmochimica Acta 75(17):4899-4916 doi:10.1016/j.gca.2011.06.008

Seyler M, Mattson PH, 1993. Gabbroic and pyroxenite layers in the Tinaquillo, Venezuela, peridotite: succession of melt intrusions in a rising mantle diapir.
Journal of Geology 101:501-511

Seyler M, Cannat M, Mével, C., 2003. Evidence for major-element heterogeneity in the mantle source of abyssal peridotites from the Southwest Indian Ridge (52° to 68° E).
Geochem. Geophys. Geosyst. 4(9101) doi:10.1029/2002GC000305

Seyler M, Lorand J-P, Toplis MJ, Godard G, 2004. Asthenospheric metasomatism beneath the mid-ocean ridge: Evidence from depleted abyssal peridotites.
Geology 32(2):301-304 doi:10.1130/G20191.1

Shaw CSJ, 1999. Dissolution of orthopyroxene in basanitic magma between 0.4 and 2 GPa: further implications for the origin of Si-rich alkaline glass inclusions in mantle xenoliths.
Contributions to Mineralogy and Petrology 135:114-132 doi:10.1007/s004100050501

Shaw DM, 1970. Trace element fractionation during anatexis.
Geochimica et Cosmochimica Acta 34:237-243 doi:10.1016/0016-7037(70)90009-8

Shen Y, Forsyth DW, 1995. Geochemical constraints on initial and final depths of melting beneath mid-ocean ridges.
Journal Geophysical Research 100(B2):2211-2237 doi:10.1029/94JB02768

Shervais JW, Wilshire HG, Schwarzman EC, 1973. Garnet Clinopyroxenite xenolith from Dish Hill, California.
Nature 19:120-130 doi:10.1016/0012-821X(73)90106-4

Shervais JW, Mukasa SB, 1991. The Balmuccia orogenic lherzolite massif, Italy.
Journal of Petrology Special Volume(2):155-176 doi:10.1093/petrology/Special_Volume.2.155

Shi P, Libourel G, 1991. The effects of FeO on the system CMAS at low pressure and implications for basalt crystallization processes.
Contributions to Mineralogy and Petrology 108:129-145 doi:10.1007/BF00307332

Shorttle O, Maclennan J, Piotrowski AM, 2013. Geochemical provincialism in the Iceland plume.
Geochimica et Cosmochimica Acta 122:363–397 doi:10.1016/j.gca.2013.08.032

Shorttle O, Maclennan J, 2011. Compositional trends of Icelandic basalts: Implications for short–length scale lithological heterogeneity in mantle plumes.
Geochem. Geophys. Geosyst. 12(Q11008) doi:10.1029/2011GC003748

Sigurdsson IA, Steinthorsson S, Grönvold K, 2000. Calcium-rich melt inclusions in Cr-spinels from Borgarhraun, northern Iceland.
Earth and Planetary Science Letters 183(1-2):15-26 doi:10.1016/S0012-821X(00)00269-7

Simmons NA, 2007. Mantle heterogeneity and flow from seismic and geodynamic constraints.
In, vol. Faculty of the Graduate School of the University of Texas, Austin pp 262

Sims KWW, Goldstein SJ, Blichert-Toft J, Perfit MR, Kelemen PB, Fornari DJ, Michael P, Murrell MT, Hart SR, DePaolo DJ, Layne G, Ball L, Jull M, Bender J, 2002. Chemical and isotopic constraints on the generation and transport of magma beneath the East Pacific Rise.
Geochimica et Cosmochimica Acta 66(19):3481-3504 doi:10.1016/S0016-7037(02)00909-2

Sinton J, Grönvold K, Sæmundsson K, 2005. Postglacial eruptive history of the Western Volcanic Zone, Iceland.
Geochemistry, Geophysics, Geosystems 6(12) doi:10.1029/2005GC001021

Skjerlie KP, Pati&ntild";o-Douce AE, 2002. The fluid-absent partial melting of a zoisite-bearing quartz eclogite from 1.0 to 3.2 GPa; Implications for melting in thickened continental crust and for subduction-zone processes.
Journal of Petrology 43(2):291-314 doi:10.1093/petrology/43.2.291

Skovgaard AC, Storey M, Baker J, Blusztajn J, Hart SR, 2001. Osmium-oxygen isotopic evidence for a recycled and strongly depleted component in the Iceland mantle plume.
Earth and Planetary Science Letters 194(1-2):259–275 doi:10.1016/S0012-821X(01)00549-0

Slater, L, McKenzie D, Gronvöld K, Shimizu N, 2001. Melt generation and movement beneath Theistareykir, NE Iceland.
Journal of Petrology 42(2):321–354 doi:10.1093/petrology/42.2.321

Sleep NH, 1984. Tapping of magmas from ubiquitous mantle heterogeneities: An alternative to mantle plumes.
Journal Geophysical Research 89:10029-10041 doi:10.1029/JB089iB12p10029

Sleep NH, 1988. Tapping of melts by veins and dykes.
Journal of Geophysical Research 93:10255-10272. doi:10.1029/JB093iB09p10255

Sleep NH, 1990. Hotspots and mantle plumes: some phenomenology.
Journal of Geophysical Research 95(B5):6715-6736 doi:10.1029/JB095iB05p06715

Smith CS, 1964. Some elementary principles of polycrystalline microstructure.
Metallurgical Reviews 9:1-48 doi:10.1179/095066064790152640

Smith PM, Asimow PD, 2005. Adiabat_1ph: A new public front-end to the MELTS, pMELTS, and pHMELTS models.
Geochemistry, Geophysics, Geosystems 6(1) doi:10.1029/2004GC000816

Sobolev AV, Hofmann AW, Brügmann G, Batanova VG, Kuzmin DV, 2008. A quantitative link between recycling and osmium isotopes.
Science 321:536 doi:10.1126/science.1158452

Sobolev AV, Shimizu N, 1993. Ultra-depleted primary melt included in an olivine from the Mid-Atlantic Ridge.
Nature 363(6425):151-154 doi:10.1038/nature03411

Sobolev AV, Hofmann AW, Nikogosian IK, 2000. Recycled oceanic crust observed in 'ghost plagioclase' within the source of Mauna Loa lavas.
Nature 404:986-989 doi:10.1038/35010098

Sobolev AV, Hofmann AW, Sobolev SV, Nikogosian IK, 2005. An olivine-free mantle source of Hawaiian shield basalts.
Nature 434(7033):590-597 doi:10.1038/nature03411

Sobolev AV, Hofmann AW, Kuzmin DV, Yaxley GM, Arndt NT, Chung S-L, Danyushevsky LV, Elliott T, Frey FA, Garcia MO, Gurenko AA, Kamenetsky VS, Kerr AC, Krivolutskaya NA, Matvienkov VV, Nikogosian IK, Rocholl A, Sigurdsson IA, Sushchevskaya NM, Teklay M, 2007. The Amount of Recycled Crust in Sources of Mantle-Derived Melts.
Science 316(5823):412-417 doi:10.1126/science.1138113

Sobolev SV, Babeyka AY, 1994. Modeling of mineralogical composition, density and elastic-wave velocities in anhydrous magmatic rocks.
Surveys in Geophysics 15(5):515-544 doi:10.1007/BF00690173

Spandler C, Yaxley G, Green DH, Rosenthal A, 2008. Phase Relations and Melting of Anhydrous K-bearing Eclogite from 1200 to 1600°C and 3 to 5 GPa.
Journal of Petrology 49(4):771-795 doi:10.1093/petrology/egm039

Sparks DW, Parmentier EM, 1991. Melt extraction from the mantle beneath spreading centers.
Earth and Planetary Science Letters 105(4):368-377 doi:10.1016/0012-821X(91)90178-K

Spiegelman M, McKenzie D, 1987. Simple 2-D models for melt extraction at mid-ocean ridges and island arcs
Earth and Planetary Science Letters 83:137-152 doi:10.1016/0012-821X(87)90057-4

Spiegelman M, Kenyon P, 1992. The requirements for chemical disequilibrium during magma migration.
Earth and Planetary Science Letters 109:611-620 doi:10.1016/0012-821X(92)90119-G

Spiegelman M, Elliot T, 1993. Consequences of melt transport for uranium series disequilibrium in young lavas.
Earth and Planetary Science Letters 118:1-20 doi:10.1016/0012-821X(93)90155-3

Spiegelman M, Reynolds JR, 1999. Combined dynamic and geochemical evidence for convergent melt flow beneath the East Pacific Rise.
Nature 402(6759):282-285 doi:10.1038/46260

Spiegelman M, Kelemen PB, Aharonov E, 2001. Causes and consequences of flow organization during melt transport: The reaction infiltration instability in compactible media.
Journal Geophysical Research 106(B2):2061-2077 doi:10.1029/2000JB900240

Spray JG, 1989. Upper mantle segregation processes: evidence from alpine-type peridotite.
In: Saunders AD, Norry M.J. (eds) Magmatism in the ocean basins., vol 42. Geol Soc Spec Publ p 29-40

Staples RK, White RS, Brandsdóttir B, Menke W, Maguire PKH, McBride JH, 1997. Färoe–Iceland Ridge experiment 1. Crustal structure of northeastern Iceland.
Journal of Geophysical Research 102(B4):7849–7866 doi:10.1029/96JB03911

Stevenson DJ, 1989. Spontaneous small-scale melt segregation in partial melts undergoing deformation.
Geophysical Research Letters 16:1067-1070 doi:10.1029/GL016i009p01067

Stolper EM, 1980. A phase diagram for mid-ocean ridge basalts: Preliminary results and implications for petrogenesis.
Contributions to Mineralogy and Petrology 74(1):13-27 doi:10.1007/BF00375485

Stolper EM, Asimow PD, 2007. Insights into mantle melting from graphical analysis of one-component systems.
American Journal of Science 307:1051-1139 doi:10.2475/08.2007.01

Stolper EM, DePaolo DJ, Thomas DM, 2009. Deep Drilling into a Mantle Plume Volcano: The Hawaii Scientific Drilling Project
Scientific Drilling, 7:4-14 doi:10.2204/iodp.sd.7.02.2009

Stracke A, Zindler A, Salters VJM, McKenzie D, Blichert-Toft J, Albarède F, Grönvold K, 2003. Theistareykir revisited.
Geochemistry, Geophysics, Geosystems 4(2) doi:10.1029/2001GC000201

Stracke A, Salters VJM, Sims KWW, 1999. Assessing the presence of garnet-pyroxenite in the mantle sources of basalts through combined hafnium-neodymium-thorium isotope systematics.
Geochem. Geophys. Geosyst 1(12):1-13 doi:10.1029/1999GC000013

Stracke A, Bourdon B, 2009. The importance of melt extraction for tracing mantle heterogeneity.
Geochimica et Cosmochimica Acta 73:218-238 doi:10.1016/j.gca.2008.10.015

Streickeisen AL, 1976. Classification of the common igneaous rocks by means of their chemical compositions: a provisional attempts.
Neues Jahrbuch für Mineralogie, Monastshefte p 1-15

Su W-J, Dziewonski AM, 1997. Simultaneous inversion for 3-D variations in shear and bulk velocity in the mantle.
Physics of The Earth and Planetary Interiors 100:135-156 doi:10.1016/S0031-9201(96)03236-0

Suen CJ, Frey FA, 1987. Origins of the mafic and ultramafic rocks in the Ronda peridotite.
Earth and Planetary Science Letters 85(1-3):183-202 doi:10.1016/0012-821X(87)90031-8

Suhr G, 1999. Melt migration under oceanic ridges: Inferences from reactive modelling of upper mantle hosted dunites.
Journal of Petrology 40:575-599 doi:10.1093/petroj/40.4.575

Suhr G, Hellebrand E, Snow JE, Seck HA, Hofmann AW, 2003. Significance of large and refractory dunite bodies in the upper mantle of the Bay of Islands Ophiolite.
Geochemistry, Geophysics, Geosystems 4(3) doi:10.1029/2001GC000277

Suhr G, Kelemen PB, Paulick H, 2008. Microstructures in Hole 1274A peridotites, ODP Leg 209, Mid-Atlantic Ridge: Tracking the fate of melts percolating in peridotite as the lithosphere is intercepted.
Geochem. Geophys. Geosyst. 9(3):Q03012 doi:10.1029/2007GC001726

A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - Q - Q - R - S - T - U - V - W - X - Y - Z

Takahashi E, Kushiro I, 1983. Melting of a dry peridotite at high pressures and basalt magma genesis.
American Mineralogist 68:859-879

Takahashi E, 1986. Melting of a Dry Peridotite KLB-1 up to 14 GPa: Implications on the Origin of Peridotitic Upper Mantle.
Journal Geophysical Research 91(B9):9367-9382 doi:10.1029/JB091iB09p09367

Takahashi E, Nakajima K, Wright TL, 1998. Origin of the Columbia River basalts: melting model of a heterogeneous plume head.
Earth and Planetary Science Letters 162:63-80 doi:10.1016/S0012-821X(98)00157-5

Takahashi N, 1992. Evidence for melt segregation towards fractures in the Horoman mantle peridotite complex.
Nature 359(6390):52-55 doi:10.1038/359052a0

Tang H-F, Liu C-Q, Nakai S, Orihashi Y, 2007. Geochemistry of eclogites from the Dabie-Sulu terrane, eastern China: New insights into protoliths and trace element behaviour during UHP metamorphism.
Lithos 95:441-457 doi:10.1016/j.lithos.2006.09.007

Tatsumoto M, 1966. Genetic relations of oceanic basalts as indicated by lead isotopes.
Science 153:1094–1101 doi:10.1126/science.153.3740.1094

Taylor LA, Neal CR, 1989. Eclogites with oceanic crustal and mantle signatures from the Bellsbank Kimberlite, South Africa, Part 1. Mineralogy, petrography, and whole rock chemistry.
Journal of Geology 97:551-567 doi:stable/30078363

Thibault Y, Edgar AD, Lloyd FE, 1992. Experimental investigation of melts from a carbonated phlogopite lherzolite: implications for metasomatism in the continental lithospheric mantle.
American Mineralogist 77:784-794

Thirlwall MF, Gee MAM, Taylor RN, Murton BJ, 2004. Mantle components in Iceland and adjacent ridges investigated using double-spike Pb isotope ratios.
Geochimica et Cosmochimica Acta 68(2):361–386 doi:10.1016/S0016-7037(03)00424-1

Thompson RN, 1974. Primary basalts and magma genesis.
Contributions to Mineralogy and Petrology 45(4):317-341 doi:10.1007/BF00371750

Thompson RN, 1975. Primary basalts and magma genesis.
Contributions to Mineralogy and Petrology 52(3):213-232 doi:10.1007/BF00457295

Tommasi A, Godard M, Coromina G, Dautria J-M, Barsczus H, 2004. Seismic anisotropy and compositionally induced velocity anomalies in the lithosphere above mantle plumes: a petrological and microstructural study of mantle xenoliths from French Polynesia.
Earth and Planetary Science Letters 227(3-4):539-556 doi:10.1016/j.epsl.2004.09.019

Toplis MJ, Libourel G, Carroll MR, 1994. The role of phosphorus in crystallisation processes of basalt: An experimental study.
Geochimica et Cosmochimica Acta 58(2):797-810 doi:10.1016/0016-7037(94)90506-1

Toplis MJ, 2005. The thermodynamics of iron and magnesium partitioning between olivine and liquid: criteria for assessing and predicting equilibrium in natural and experimental systems.
Contributions to Mineralogy and Petrology 149(1):22-39 doi:10.1007/s00410-004-0629-4

Tsuruta K, Takahashi E, 1998. Melting study of an alkali basalt JB-1 up to 12.5 GPa: behavior of potassium in the deep mantle.
Physics of The Earth and Planetary Interiors 107(1-3):119-130 doi:10.1016/S0031-9201(97)00130-1

Tuff J, Takahashi E, Gibson SA, 2005. Experimental Constraints on the Role of Garnet Pyroxenite in the Genesis of High-Fe Mantle Plume Derived Melts.
Journal of Petrology 46(10):2023-2058 doi:10.1093/petrology/egi046

Turcotte DL, Schubert G, 2002. Geodynamics, second edition.
Cambridge University Press doi:10.2277/0521666244

Turcotte DL, Oxburgh ER, 1967. Finite amplitude convection cells and continental drift.
Journal of Fluid Mechanics 28:29-42 doi:10.1017/S0022112067001880

Turcotte DL, 1989. Geophysical processes influencing the lower continental crust.
In: Mereu RF, Mueller S, D.M. F eds) IUGG, Geophysical Monograph 51. Properties ans processes of the Earth's lower crust 51:321-329 doi:10.1029/GM051p0321

Turcotte DL, Morgan JP, 1992. The physics of magma migration and mantle flow beneath a mid-ocean ridge.
Geophysical Monograph 71:155-182 doi:10.1029/GM071p0155

A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - Q - Q - R - S - T - U - V - W - X - Y - Z

Ulmer P, 1989. The dependence of the Fe2+-Mg cation partitioning between olivine and basaltic liquid on pressure and temperature and composition.
Contributions to Mineralogy and Petrology 101:261-273 doi:10.1007/BF00375311

A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - Q - Q - R - S - T - U - V - W - X - Y - Z

van der Hilst R, Engdahl ER, Spakman ER, Nolet G, 1991. Tomographic imaging of subducted lithosphere below northwest Pacific island arcs.
Nature 353:37-42 doi:10.1038/353037a0

van der Hilst R, 1995. Complex morphology of subducted lithosphere in the mantle beneath the Tonga trench.
Nature 374(6518):154-157 doi:10.1038/374154a0

van der Hilst R, Widiyantoro S, Engdahl ER, 1997. Evidence for deep mantle circulation from global tomography.
Nature 386:578-584 doi:10.1038/386578a0

van der Wal D, Vissers RLM, 1993. Uplift and emplacement of upper mantle rocks in the western Mediterranean.
Geology 21:1119-1121 doi:10.1130/0091-7613(1993)021<1119:UAEOUM>2.3.CO;2

van der Wal D, Bodinier JL, 1996. Origin of the recrystallisation front in the Ronda peridotite by km-scale pervasive porous melt flow.
Contributions to Mineralogy and Petrology 122:387-405 doi:10.1007/s004100050135

van der Wal D, Vissers RLM, 1996. Structural petrology of the Ronda peridotite, SW Spain: Deformation history.
Journal of Petrology 37, 23-43. doi:10.1093/petrology/37.1.23

Villiger S, Ulmer GC, Müntener O, Thompson AB, 2004. The liquid line of descent of anhydrous, mantle-derived, tholeiitic liquids by fractional and equilibrium crystallization - An experimental study at 1.0 GPa.
Journal of Petrology 45(12):2368-2388 doi:10.1093/petrology/egh042

Volkova NI, Frenkel AE, Budanov VI, Lepezin GG, 2004. Geochemical signatures for eclogite protolith from the Maksyutov Complex, South Urals.
Journal of Asian Earth Sciences 23:745-759 doi:10.1016/S1367-9120(03)00128-7

A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - Q - Q - R - S - T - U - V - W - X - Y - Z

Wagner TP, Grove TL, 1998. Melt/harzburgite reaction in the petrogenesis of tholeiitic magma from Kilauea volcano, Hawaii.
Contributions to Mineralogy and Petrology 131:1-12 doi:10.1007/s004100050374

Walker D, Shibata T, DeLong S, 1979. Abyssal tholeiites from the Oceanographer Fracture Zone.
Contributions to Mineralogy and Petrology 70(2):111-125 doi:10.1007/BF00374440

Wallace ME, Green DH, 1988. An experimental determination of primary carbonatite magma composition.
Nature 335:343-346 doi:10.1038/335343a0

Walter MJ, Presnall DC, 1994. Melting behavior of simplified lherzolite in the system CaO-MgO-Al2O3-SiO2-Na2O from 7 to 35 kbar.
Journal of Petrology 35(2):329-359 doi:10.1093/petrology/35.2.329

Walter MJ, 1998. Melting of Garnet Peridotite and the Origin of Komatiite and Depleted Lithosphere.
Journal of Petrology 39(1):29-60 doi:10.1093/petroj/39.1.29

Wark DA, Williams CA, Watson EB, Price JD, 2003. Reassessment of pore shapes in microstructurally equilibrated rocks, with implications for permeability of the upper mantle.
Journal of Geophysical Research 108 (B1), 2050. doi:10.1029/2001JB001575

Warren JM, Shimizu N, Sakaguchi C, Dick HJB, Nakamure E, 2009. An assessment of upper mantle heterogeneity based on abyssal peridotite isotopic compositions.
Journal of Geophysical Research 114(B12203) doi:10.1029/2008JB006186

Warren JM, Shimizu N, 2010. Cryptic Variations in Abyssal Peridotite Compositions: Evidence for Shallow-level Melt Infiltration in the Oceanic Lithosphere.
Journal of Petrology 51(1-2):395-423 doi:10.1093/petrology/egp096

Wasylenki LE, 1999. Partial melting of depleted peridotite in the Earth's upper mantle and implications for generation of mid-ocean ridge basalts.
In: California Institute of Technology, Pasadena pp 158

Wasylenki LE, Baker MB, Kent AJR, Stolper EM, 2003. Near-solidus Melting of the Shallow Upper Mantle: Partial Melting Experiments on Depleted Peridotite.
Journal of Petrology 44(7):1163-1191 doi:10.1093/petrology/44.7.1163

Watson E, Wark D, Price J, Van Orman J, 2002. Mapping the thermal structure of solid-media pressure assemblies.
Contributions to Mineralogy and Petrology 142(6):640-652 doi:10.1007/s00410-001-0327-4

Weaver J, Langmuir CH, 1990. Calculation of phase equilibrium in mineral-melt systems.
Computers & Geosciences 16:1-19 doi:10.1016/0098-3004(90)90074-4

White RS, McKenzie D, O'Nions RK, 1992. Oceanic crustal thickness from seismic measurements and rare earth element inversions.
Journal of Geophysical Research 97:19683-19715 doi:10.1029/92JB01749

White RW, Powell R, Holland TJB, Worley B, 2000. The effect of TiO2 and Fe2O3 on metapelitic assemblages at greenschist and amphibolite facies conditions: mineral equilibria calculations in the system K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3.
Journal of Metamorphic Geology 18(5):497–511 doi:10.1046/j.1525-1314.2000.00269.x

White WM, 1985. Sources of oceanic basalts: radiogenic isotopic evidence.
Geology 13:15-118 doi:10.1130/0091-7613(1985)13<115:SOOBRI>2.0.CO;2

Wiens DA, Kelley KA, Plank T, 2006. Mantle temperature variations beneath back-arc spreading centers inferred from seismology, petrology, and bathymetry.
Earth and Planetary Science Letters 248:30-42 doi:10.1016/j.epsl.2006.04.011

Wilshire HG, Shervais JW, 1975. Al-augite and Cr-diopside ultramafic xenoliths in basaltic rocks from the western United States.
Physics and Chemistry of the Earth 9:257-272 doi:10.1016/0079-1946(75)90021-X

Wilson JT, 1963. Evidence from islands on the spreading of ocean floors.
Nature 197:536–538 doi:10.1038/197536a0

Wilson M, 1989. Igneous petrogenesis. A global tectonic approach.
Published by Chapman & All, London

Wood DA, 1979. A variably veined suboceanic upper mantle-genetic significance for mid-ocean ridge basalts from geochemical evidence.
Geology 7:499-503 doi:10.1130/0091-7613(1979)7<499:AVVSUM>2.0.CO;2

Wood MI, Hess PC, 1980. The structural role of Al2O3, TiO2 in immiscible silicate liquids in the system SiO2-MgO-CaO-FeO-TiO2-Al2O3.
Contributions to Mineralogy and Petrology 72:319-328 doi:10.1007/BF00376151

A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - Q - Q - R - S - T - U - V - W - X - Y - Z

Xirouchakis D, Hirschmann MM, Simpson JA, 2001. The effect of titanium on the silica content and on mineral-liquid partitioning of mantle-equilibrated melts.
Geochimica et Cosmochimica Acta 65(14):2201-2217 doi:10.1016/S0016-7037(00)00549-4

Xu Y, 2002. Evidence for crustal components in the mantle and constraints on crustal recycling mechanisms: pyroxenite xenoliths from Hannuoba, North China.
Chemical geology 182:301-322 doi:10.1016/S0009-2541(01)00300-X

A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - Q - Q - R - S - T - U - V - W - X - Y - Z

Yasuda A, Fujii T, Kurita K, 1994. Melting phase relations of an anhydrous mid-ocean ridge basalt from 3 to 20 GPa: Implications for the behavior of subducted oceanic crust in the mantle.
Journal of Geophysical Research 99(B5):9401-9414 doi:10.1029/93JB03205

Yaxley G, Green DH, 1998. Reactions between eclogite and peridotite: mantle refertilisation by subduction of oceanic crust.
Schweizerische Mineralogische und Petrographische Mitteilungen 78(2):243 - 255 doi:10.5169/seals-59286

Yaxley GM, 2000. Experimental study of the phase and melting relations of homogeneous basalt + peridotite mixtures and implications for the petrogenesis of flood basalts.
Contributions to Mineralogy and Petrology 139(3):326-338 doi:10.1007/s004100000134

Yaxley GM, Brey GP, 2004. Phase relations of carbonate-bearing eclogite assemblages from 2.5 to 5.5 GPa: implications for petrogenesis of carbonatites.
Contributions to Mineralogy and Petrology 146: 606-619 doi:10.1007/s00410-003-0517-3

Yoder HS, Tilley CE, 1962. Origin of basalt magmas: an experimental study of natural and synthetic rock system.
Journal of Petrology 3:342-532 doi:10.1093/petrology/3.3.342

Yoder HS, 1976. Generation of basaltic magma.
In: National Academy of Science, Washington, DC p 143-144

A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - Q - Q - R - S - T - U - V - W - X - Y - Z

Zamora D, 2000. Fusion partielle de la croûte océanique subductée : approche expérimentale et géochimique.
In: Département des Sciences de la Terre, Université Blaise Pascal, Clermont-Ferrand pp 314

Zeck HP, Albat F, Hansen BT, Torres-Roldan RN, Garcia-Casco A, 1989. Alpine tourmaline-bearing muscovite leucogranites, intrusion age and petrogenesis, Betic Cordilleras, SE Spain.
Neues Jahrbuch für Mineralogie Monatshefte 513-520

Zhang G, 2011. Comparative study of magmatism in East Pacific Rise versus nearby seamounts: Constraints on magma supply, themal structure beneath mid-ocean ridge.
Acta Geologica Sinica 85(6):1286-1298 doi:10.1111/j.1755-6724.2011.00588.x

Zhang J, Herzberg C, 1994. Melting experiments on anhydrous peridotite KLB-1 from 5.0 to 22.5 GPa.
Journal of Geophysical Research 99(B9):17,729-717,742 doi:10.1029/94JB01406

Zhang Y, Stolper EM, 1991. Water diffusion in basaltic melt.
Nature 351:306-309 doi:10.1038/351306a0

Zhao D, 2004. Global tomographic images of mantle plumes and subducting slabs: insight into deep Earth dynamics.
Physics of The Earth and Planetary Interiors 146:3-34 doi:10.1016/j.pepi.2003.07.032

Zindler A, Staudigel H, Hart SR, Endres R, Goldstein SL, 1983. Nd and Sr isotopic study of a mafic layer from Ronda ultramafic complex.
Nature 304:226-230 doi:10.1038/304226a0

Zindler A, Hart SR, 1986. Chemical geodynamics.
Annual Review of Earth and Planetary Sciences 14:493-571 doi:10.1146/annurev.ea.14.050186.002425

Assayag N, Matter JM, Ader M, Goldberg D, Agrinier P, 2009. Water-rock interaction during a CO2 field injection test: Implications on host rock dissolution and alteration effects.
Chemical Geology 265:227-235

#REF! in revision

Barnes I, O'Neil JR, 1969. Relationship between fluids in some fresh alpine-type ultramafics and possible modern serpentinization, western United States.
GSA Bull 80(10):1947-1960

Behn MD, Boettcher M, Hirth G, 2007. On the thermal structure of oceanic transform faults.
Geology 35:307-310

Boettcher M, Hirth G, Evans B, 2007. Olivine friction at the base of oceanic seismogenic zones.
Journal of Geophysical Research B01205 doi:10.1029/2006JB004301

Brantut N, Schubnel A, David EC, Héripré E, Guéguen Y, Dimanov A, 2012. Dehydration-induced damage and deformation in gypsum and implications for subduction zone processes.
Journal of Geophysical Research B03205 doi:10.1029/2006JB004301

Bruni J, Canepa M, Chiodini G, Cioni R, Cipolli F, Longinelli A, Marini L, Ottonello G, Zuccolini M V, 2002. Irreversible water-rock mass transfer accompanying the generation of the neutral, Mg-HCO3 and high-pH, Ca-OH spring waters of the Genova province, Italy.
Applied Geochemistry 17(4):455-474

Chernak L, Hirth G, 2011. Syn-deformational antigorite dehydration produces stable fault slip.
Geology 39:847-850 doi:10.1130/G31919.1

Chernak L, Hirth G, 2010. Deformation of antigorite serpentinite at high temperature and pressure.
Earth and Planetary Sciences letter 296:23-33 doi:10.1016/j.epsl.2010.04.035

Clark ID, Fontes JC, 1990. Paleoclimatic reconstruction in northern Oman based on carbonates from hyperalkaline groundwaters.
Quaternary Res 33(3):320-336

Coleman RG, Keith TE, 1971. A chemical study of serpentinization, Burro Mountain, California
Journal of Petrology 12:311-328

Coussy O, 2005. Poromechanics of freezing materials.
Journal of the Mechanics and Physics of Solids 53:1689-1718

Coussy O, Monteiro PJM, 2008. Poroelastic model for concrete exposed to freezing temperatures.
Cement concrete research 38(1):40-44 doi:10.1016/j.cemconres.2007.06.006

Coussy O, Monteiro PJM, 2009. Errata to “Poroelastic model for concrete exposed to freezing temperatures” [Cement and Concrete Research 38 (2008) 40–48].
Cement concrete research 39(4):371-371 doi:10.1016/j.cemconres.2009.01.009

deMartin B, Hirth G, Evans B, 2006. Experimental constraints on thermal cracking of peridotite at oceanic spreading centers.
AGU Monograph 148:167-185

Eiler JM, Schauble E, 2004. 18O13C16O in Earth's atmosphere.
Gechimica et Cosmochimica Acta 68(23):4767-4777 doi:10.1016/j.gca.2004.05.035

Eiler JM, 2007. "Clumped-isotope" geochemistry - The study of naturally occurring, multiplysubstituted isotopologues.
Earth and Planetary Science Letters 262:309-327

Escartin J, Andreani M, Hirth G, Evans B, 2008. Relationships between the microstructural evolution and the rheology of talc at elevated pressures and temperatures.
Earth and Planetary Science Letters 268:463–475

Evans BW, Kuehner SM, Chopelas A, 2009. Magnetite-free, yellow lizardite serpentinization of olivine websterite, Canyon Mountain complex, N.E. Oregon.
Americain Mineralogist 94

Fischer GJ, Paterson MS, 1992. Measurement of permeability and storage capacity in rocks during deformation at high temperature and pressure, in Evans, B., and Wong, T.-F., eds., Fault Mech. transport properties rocks.
In: New York, Academic Press p 213-252

Fruh-Green GL, Connolly JAD, Plas A, 2004. Serpentinization of Oceanic Peridotites: Implications for Geochemical Cycles and Biological Activity.
AGU Monograph 144:119-136

Gelhar LW, Collins MA, 1971. General analysis of longitudinal dispersion in nonuniform flow.
Water Resources Research 7(6):1511-1521

Hall PL, Astill DM, McConnell JDC, 1986. Thermodynamic and structural aspects of the dehydration of smectites in sedimentary rocks.
Clay Minerals 21(4):633-648 doi:10.1180/claymin.1986.021.4.13

Heard HC, Rubey WW, 1966. Tectonic implications of gypsum dehydration.
Geological Society of America Bulletin 77(7):741-760 doi:10.1130/0016-7606(1966)77[741:TIOGD]2.0.CO;2

Hirth G, Tullis J, 1991. The effect of porosity on the strength of quartz aggregates experimentally deformed in the dislocation creep regime.
Tectonophysics 200:97-110

Hsieh PA, Shapiro AM, Barton CC, Haeni FP, Johnson CD, Martin CW, Paillet FL, Winter TC, Wright DL, 1993. Methods of characterizing fluid movement and chemical transport in fractured rock. In: Chaney, J.T., Hepburn, c. (Eds.), Field Trip Guidebook for Northeastern United States.
Geological Society of America, Boston, MA p R1-R23

Jamtveit B, Kobchenko M, Austrheim H, Malthe-Sorenssen A, Royne A, Svensen H, 2011. Porosity evolution and crystallization-driven fragmentation during weathering of andesite.
Journal of Geophysical Research 116:B12204 doi:10.1029/2011JB008649

Jung H, Green HW, Dobrzhinetskaya LF, 2004. Intermediate depth earthquake faulting by dehydration embrittlement with negative volume change.
Nature 428(6982):545–549 doi:10.1038/nature02412

Karner S L, Schreiber B C, 1993. Experimental simulation of plagioclase diagenesis at PT conditions of 3.5 km burial depth.
In: Experimental Techniques in Mineral and Rock Physics. The Schreiber Volume. 141(2):221-247 doi:10.1007/978-3-0348-5108-4_3

Kelemen PB, Hirth G, 2012. Reaction-driven cracking during retrograde metamorphism: Olivine hydration and carbonation
Earth and Planetary Sciences letter 345-348:81-89